Cite

Bai, Z.D., Rao, C.R., Zhao, L.C., 1989. Kernel estimators of density function of directional data. Multivariate Statistics and Probability, 1989, 24–39. Search in Google Scholar

Balabukh, V., 2008. Variability of very heavy rains and heavy rains in Ukraine. Scientific works of UkrGMI, 257, 61–72. Search in Google Scholar

Balabukh, V., 2011. Interannual Variability of Convection Intensity in Ukraine. Global and Regional Climate Change. Nika-Center, Kyiv, pp. 150–159. Search in Google Scholar

Bertola, M., Viglione, A., Lun, D., Hall, J., Blöschl, G., 2020. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth Syst. Sci., 24, 4,1805–1822. Search in Google Scholar

Beurton, S., Thieken, A., 2009. Seasonality of floods in Germany. Hydrological Sciences Journal, 54, 1, 62–76. Search in Google Scholar

Beven, K., 1993. Riverine flooding in a warmer Britain. Geographical Journal, 159, 157–161. Search in Google Scholar

Blöschl, G., Hall, J., Viglione, A., Perdigão, R.A., Parajka, J., Merz, B., et al., 2019. Changing climate both increases and decreases. European river floods. Nature, 573, 7772, 108–111. Search in Google Scholar

Blöschl, G., Nester, T., Komma, J., Parajka, J., Perdigão, R.A.P., 2013a. The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci., 17, 5197–5212. Search in Google Scholar

Blöschl, G., Sivapalan, M., Savenije, H., Wagener, T., Viglione, A., 2013b. Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales. Cambridge University Press, 465 p. https://doi.org/10.1017/CBO9781139235761. Search in Google Scholar

Blöschl, G., Hall, J., Parajka, J., Perdigão, R.A.P., Merz, B., Arheimer, B., Aronica, G.T., Bilibashi, A., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G.B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T.R., Kohnová, S., Koskela, J.J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari,A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J.L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., Živkovic, N., 2017. Changing climate shifts timing of European floods, Science, 357, 588–590. Search in Google Scholar

Blöschl, G., Blaschke, A.P., Haslinger, K., Hofstätter, M., Parajka, J., Salinas, J., Schöner, W., 2018. Auswirkungen der Klimaänderung auf Österreichs Wasserwirtschaft - ein aktualisierter Statusbericht (Impact of climate change on Austria’s water sector - an updated status report) Österreichische Wasser- und Abfallwirtschaft, 70, 462–473. Search in Google Scholar

Blöschl, G., 2022. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci., 26, 5015–5033. Search in Google Scholar

Brady, A., Faraway, J., Prosdocimi, I., 2019. Attribution of long-term changes in peak river flows in Great Britain. Hydrological Sciences Journal, 64, 10, 1159–1170. Search in Google Scholar

Breinl, K., Lun, D., Müller-Thomy, H., Blöschl, G., 2021. Understanding the relationship between rainfall and flood probabilities through combined intensity-duration-frequency analysis. Journal of Hydrology, 602, 126759. Search in Google Scholar

Bronstert, A., 2003. Floods and climate change: Interactions and impacts. Risk Analysis, 23, 545–557. Search in Google Scholar

Bürger, G., Pfister, A., Bronstert, A., 2021. Zunehmende Starkregenintensitäten als Folge der Klimaerwärmung: Datenanalyse und Zukunftsprojection. Hydrologie und Wasserbewirtschaftung, 6, 262–271. Search in Google Scholar

Chiew, F., 2006. Estimation of rainfall elasticity of streamflow in Australia, Hydrological Sciences Journal, 51, 4, 613–625. Search in Google Scholar

Climate Change, 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC, Cambridge University Press. Search in Google Scholar

Dai, A., Fung, I.Y., DelGenio, A.D., 1997. Surface observed global land precipitation variations during 1900–1988. J. Clim., 10, 2943–2962. Search in Google Scholar

Didovets, I., Bronstert, A., Snizhko, S., Balabukh, V., Krysanova, V., 2019. Climate change impact on regional floods in the Carpathian region. Journal of Hydrology: Regional Studies, 22, 100590. Search in Google Scholar

European Environment Agency, 2022a. Economic damage caused by weather- and climate-related extreme events in EEA Member Countries (1980-2020) - per hazard type based on CATDAT. https://www.eea.europa.eu/data-and-maps/figures/economic-damage-caused-by-weather-2 Search in Google Scholar

European Environment Agency, 2022b. Economic losses from climate-related extremes in Europe. https://www.eea.europa.eu/en/datahub/datahubitem-view/77389680-ecd2-4f56-926f-8106061a5570 Search in Google Scholar

Fleig, A., Tallaksen, L., James, P., Hisdal, H., Stahl, K., 2015. Attribution of European precipitation and temperature trends to changes in synoptic circulation. Hydrol. Earth. Syst. Sci., 19, 3093–3107. Search in Google Scholar

Gaál, L., Szolgay, J., Kohnová, S., Parajka, J., Merz, R., Viglione, A., Blöschl, G., 2012. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research, 48, 4. Search in Google Scholar

Gopchenko, E., Loboda, N., 2001. An evaluation of possible changes in water resources of Ukraine under global warming conditions. Hydrobiological Journal, 2001, 37, 5, 105–117. Search in Google Scholar

Gorbachova, L.O., Koshkina, O.V.,2013. Temporal regularities of the onset of the main characteristics of the spring flood in the basin of the Desna River. Hydrology, hydrochemistry and hydroecology, 2, 30–37. Search in Google Scholar

Gorbachova, L.O., Prykhodkina, V.S., Khrystiuk, B.F., Zabolotnia, T.O., Rozlach, V.O., 2021. Statistical analysis of maximum runoff of the Southern Buh River using the method of ‘Indicators of Hydrologic Alteration’. Ukrainian Hydrometeorological Journal, 27, 42–54. Search in Google Scholar

Gopchenko, E., Ovcharuk, V., Shakirzanova, J., Goptsiy, M., Traskova, A., Shvec, N., Serbova, Z., Todorova, О., 2018. Modelling of extreme floods on example of mountain regions of Ukraine. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 3, 82, 6–15. Search in Google Scholar

Groisman, P.Y., Knight, R.W., Karl, T.R., Easterling, D.R., Sun, B., 2004. Contemporary changes of the hydrological cycle over the contiguous United States: trends. J. Hydrometeor., 5, 64–85. Search in Google Scholar

Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T.R., Kriaučiūnienė, J., Kundzewicz, Z.W., Lang, M., Llasat, M.C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R.A.P., Plavcová, L., Rogger, M., Salinas, J.L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., Blöschl, G., 2014. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci., 18, 2735–2772. Search in Google Scholar

Hall, J., Blöschl, G., 2018. Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci., 22, 3883–3901. Search in Google Scholar

Hannaford, J., Marsh, T., 2006. An assessment of trends in UK runoff and low flows using a network of undisturbed catchments. Int. J. Climatol., 26, 1237–1253. Search in Google Scholar

Haslinger, K., Hofstätter, M., Schöner, W., Blöschl, G., 2021. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Climate Dynamics, 57, 1009–1021. Search in Google Scholar

Hofstätter, M., Lexer, A., Homan, M., Blöschl, G., 2018. Large-scale heavy precipitation over central Europe and the role of atmospheric cyclone track types. International Journal of Climatology, 38, 497–517. Search in Google Scholar

Hrebin, V., 2010. Modern Water Regime of Rivers of Ukraine (Landscape and Hydrological Analysis). Nika-Center, Kyiv, 180 p. Search in Google Scholar

Hulme, M., Osborn, T.J., Johns, T.C., 1998. Precipitation sensitivity to global warming: comparisons of observations with HadCM2 simulations. Geophys. Res. Lett., 25, 3379–3382. Search in Google Scholar

IPCC, 2018. Summary for Policymakers. In: Global Warming of 1.5°C. Intergovernmental Panel on Climate Change. Search in Google Scholar

Ivancic, T.J., Shaw, S.B., 2015. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133, 4, 681–693. Search in Google Scholar

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 3, 437–472. Search in Google Scholar

Karl, T.R., Trenberth, K.E., 2003. Modern global climate change. Science, 302, 1719–1723. Search in Google Scholar

Kernel Density Estimation, 2022. https://mathisonian.github.io/kde/ Search in Google Scholar

Klemelä, J., 2000. Estimation of densities and derivatives of densities with directional data. Journal of Multivariate Analysis, 73, 1,18–40. Search in Google Scholar

Lavers, D.A., Allan, R.P., Wood, E.F., Villarini, G., Brayshaw, D.J., Wade, A.J., 2011. Winter floods in Britain are connected to atmospheric rivers. Geophysical Research Letters, 38, 23, L23803. Search in Google Scholar

Lavers, D.A., Villarini, G., 2013. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophysical Research Letters, 40, 12, 3259–3264. Search in Google Scholar

Lun, D., Viglione, A., Bertola, M., Komma, J., Parajka, J., Va-lent, P., Blöschl, G., 2021. Characteristics and process controls of statistical flood moments in Europe – a data-based analysis. Hydrology and Earth System Sciences, 25, 5535–5560. Search in Google Scholar

Łupikasza, E., Hansel, S, Matschullat, J., 2010. Regionaland seasonal variability of extreme precipitation trends in southern Poland and central-eastern Germany 1951-2006.International Journal of Climatology, 31, 2249–2271. Search in Google Scholar

Mangini, W., Viglione, A., Hall, J., Hundecha, Y., Ceola, S., Montanari, A., Rogger, M., Salinas, J., Borzì, I., Parajka, J., 2018. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrological Sciences Journal, 63, 4, 493–512. Search in Google Scholar

Mann, H., 1945. Nonparametric tests against trend. Econometrica, 13, 245–259. Search in Google Scholar

Matygin, A., Ivanov, S., Ivus, G., Palamarchuk, J., 2010. Changes in the precipitation and runoff regimes over the Eastern Europe. EGU General Assembly Conference Abstracts. Vienna, Austria, vol. 12, EGU2010-8087. Search in Google Scholar

Mediero, L., Santillán, D., Garrote, L., Granados, A., 2014. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. Journal of Hydrology, 517, 1072. Search in Google Scholar

Melnyk, S., Loboda, N., 2018. Trends in monthly, seasonal, and annual fluctuations in flood peaks for the upper Dniester River. Meteorology Hydrology and Water Management, 8, 2, 28–36. Search in Google Scholar

Merz, R., Blöschl, G., 2003. A process typology of regional floods. Water Resources Research, 39, 12, 1340. Search in Google Scholar

Merz, R., Blöschl, G., 2009. Process controls on the statistical flood moments - a data-based analysis. Hydrol. Process., 23, 5, 675–696. Search in Google Scholar

Merz, R., Vorogushyn, S., Uhlemann, S., Delgado, J., Hundecha, Y., 2012. HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”, Hydrol. Earth Syst. Sci., 16, 1379–1387. Search in Google Scholar

Niedźwiedź, T., Twardosz, R., Walanus, A., 2009. Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theor. Appl. Climatol., 98, 337–350. Search in Google Scholar

Ovcharuk, V.A., 2020. The maximum flow of spring flood of lowland rivers of Ukraine. Helvetica Publishing House, Odesa, 300 p. Search in Google Scholar

Ovcharuk, V., Gopchenko, E., 2022. Engineer substantiation of estimated characteristics of maximum rivers’ runoff during floods under climate change. In: Madhav, S., Kanhaiya, S., Srivastav, A., Singh, V., Singh, P. (Eds.): Ecological Significance of River Ecosystems Challenges and Management Strategies. Elsevier, pp. 351–382. Search in Google Scholar

Ovcharuk, V., Goptsiy, M., 2022. Study of trends in the time series of maximum water discharges in the Tisza basin rivers within Ukraine. Acta Hydrologica Slovaca, 23, 1, 32–41. Search in Google Scholar

Ovcharuk, V.A., Hopchenko, Ye., D., Traskova, A.V., 2017. Normalization of the Characteristics of the Maximum Runoff the Spring Flood in the Dniester River basin. Panov Publ, Kharkiv, 252 p. Search in Google Scholar

Ovcharuk, V., Prokofiev, O., Todorova, O., Kichuk, N., 2019. The study of the periodicity of catastrophic spring floods on the territory of Ukraine. Kharkiv National University, Series Geology. Geography. Ecology, 50, 136–147. Search in Google Scholar

Ovcharuk, V., Gopchenko, E., Kichuk, N., Shakirzanova, Sh., Kushchenko, L., Myroschnichenko, M., 2020. Extreme hydrological phenomena in the forest steppe and steppe zones of Ukraine under the climate change. Proc. IAHS, 383, 229–235. Search in Google Scholar

Rottler, E., Bronstert, A., Bürger, G., Rakovec, O., 2021. Projected changes in Rhine River flood seasonality under global warming, Hydrol. Earth Syst. Sci., 25, 2353–2371. Search in Google Scholar

Sankarasubramanian, A., Vogel, R., 2001. Climate elasticity of streamflow in the United States. Water Resources Research, 37, 6, 1771–1781. Search in Google Scholar

Silverman, S., Solmon, M., 1998. The unit of analysis in field research: Issues and approaches to design and data analysis. Journal of Teaching in Physical Education, 17, 3, 270–284. Search in Google Scholar

Sivapalan, M., Blöschl, G., Merz, R., Gutknecht, D., 2005. Linking flood frequency to long-term water balance: incorporating effects of seasonality. Water Resources Research, 41, W06012. Search in Google Scholar

Snizhko, S., Obodovskiy, O., Shevchenko, O. at al., 2020. Regional assessment changes of the river’s runoff of Ukrainian Carpathians region under climate changes. Ukrainian Geographical Journal, 2, 110, 20–29. Search in Google Scholar

Snizhko, S., Trypolska, G., Shevchenko, O., Obodovskyi, O., Didovets, I., Kostyrko, I., 2021. Structure design of the flood hazard assessment and mapping technology for adaptation of Ukrainian water sector to climate change. Geoinformatics, 2021, 1–6. Search in Google Scholar

Snizhko, S., Bertola, V., Ovcharuk, O., Shevchenko, G., Blöschl, G., 2022. Climate change impact on seasonality of flood in the Desna River basin, North Ukraine. In: Proc. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. Kyiv, pp. 1–5. Search in Google Scholar

Steirou, E., Gerlitz, L., Apel, H., Sun, X., Merz, B., 2019. Climate influences on flood probabilities across Europe, Hydrol. Earth Syst. Sci., 23, 1305–1322. Search in Google Scholar

Sui, J., Koehler, G., 2001. Rain-on-snow induced flood events in Southern Germany. Journal of Hydrology, 252, 1–4, 205–220. Search in Google Scholar

Twardosz, R., Cebulska, M., 2014. Anomalously high monthly precipitation totals in the Polish Carpathian Mountains and their foreland (1881–2010). Prace Geograficzne, 138, 7–28. Search in Google Scholar

Twardosz, R., Niedźwiedź, T., Łupikasza, E., 2011. The influence of atmospheric circulation on the type of precipitation (Kraków, southern Poland). Theor. Appl. Climatol., 104, 1, 233–250. Search in Google Scholar

Twardosz, R., Cebulska, M., Walanus, A., 2016. Anomalously heavy monthly and seasonal precipitation in the Polish Carpathian Mountains and their foreland during the years 1881-2010. Theor. Appl. Climatol., 126, 323–337. Search in Google Scholar

Tatarchuk, O., Tymofeyev, V., 2017. Heavy showers in Ukraine at the turn of the 20th and 21th centuries. Bulletin of Taras Shevchenko National University of Kyiv, Geography, 1–2, 66–67. Search in Google Scholar

van Bebber, W.J., 1891. Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890. Meteorol. Z., 8, 361–366. Search in Google Scholar

Van den Besselaar, E., Klein Tank, A., Buishand, T., 2013. Trends in European precipitation extremes over 1951-2010. International Journal of Climatology, 33, 12, 2682–2689. Search in Google Scholar

Venegas-Cordero, N., Kundzewicz, Y., Jamro, S., Piniewski, M., 2022. Detection of trends in observed river floods in Poland. Journal of Hydrology: Regional Studies, 41, 101098. Search in Google Scholar

Vyshnevskyi, V., Donich, O., 2021. Climate change in the Ukrainian Carpathians and its possible impact on river runoff. Acta Hydrologica Slovaca, 22, 1, 3–14. Search in Google Scholar

Wilby, R., Beven, K., Reynard, N., 2008. Climate change and fluvial flood risk in the UK: more of the same? Hydrol. Process., 22, 2511–23. Search in Google Scholar

Zabolotnia, T., Borbala, S., Gorbachova, L., Parajka, J., Tong, R., 2021. Comparison of winter design floods between Austrian and Ukrainian Danube River tributaries. Acta Hydrologica Slovaca, 22, 2, 256–263. Search in Google Scholar

Zabolotnia, T., Parajka, J., Gorbachova, L., Széles, B., Blöschl, G., Aksiuk, O., Tong, R., Komma, J., 2022. Fluctuations of winter floods in small Austrian and Ukrainian catchments. Hydrology, 9, 38. Search in Google Scholar

Zanardo, S., Nicotina, L., Hilberts, A.G.J., Jewson, S.P., 2019. Modulation of economic losses from European floods by the North Atlantic Oscillation. Geophysical Research Letters, 46, 5, 2563–2572. Search in Google Scholar

eISSN:
1338-4333
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other