1. bookVolume 70 (2022): Issue 4 (December 2022)
Journal Details
License
Format
Journal
eISSN
1338-4333
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
Open Access

Introduction to the special issue on fire impacts on hydrological processes

Published Online: 16 Nov 2022
Volume & Issue: Volume 70 (2022) - Issue 4 (December 2022)
Page range: 385 - 387
Journal Details
License
Format
Journal
eISSN
1338-4333
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English

Alkin, Q., Kinoshita, A.M., 2020. A case study of soil moisture and infiltration after an urban fire. Fire, 3, 2, 22.10.3390/fire3020022 Search in Google Scholar

Andrea, F., Bini, C., Amaducci, S., 2018. Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Applied Soil Ecology, 123, 693–698.10.1016/j.apsoil.2017.06.031 Search in Google Scholar

Atanassova, I., Harizanova, M., Benkova, M., Doerr, S.H., 2022. Changes in organic molecular marker signatures in soils amended with biochar during a three-year experiment with maize on a Fluvisol. J. Hydrol. Hydromech., 70, 4, 401–409.10.2478/johh-2022-0025 Search in Google Scholar

Backer, D.M., Jensen, S.E., McPherson, G.R., 2004. Impacts of fire-suppression activities on natural communities. Conservation Biology, 18, 4, 937–946.10.1111/j.1523-1739.2004.494_1.x Search in Google Scholar

Boerner, R.E., Huang, J., Hart, S.C., 2009. Impacts of fire and fire surrogate treatments on forest soil properties: a meta- analytical approach. Ecological Applications, 19, 2, 338–358.10.1890/07-1767.119323194 Search in Google Scholar

Busch, D.E., Smith, S.D., 1993. Effects of fire on water and salinity relations of riparian woody taxa. Oecologia, 94, 2, 186–194.10.1007/BF0034131628314031 Search in Google Scholar

Caltabellotta, G., Iovino, M., Bagarello, V., 2022. Intensity and persistence of water repellency at different soil moisture contents and depths after a forest wildfire. J. Hydrol. Hydromech., 70, 4, 410–420.10.2478/johh-2022-0031 Search in Google Scholar

Ebel, B.A., 2020. Temporal evolution of measured and simulated infiltration following wildfire in the Colorado Front Range, USA: Shifting thresholds of runoff generation and hydrologic hazards. Journal of Hydrology, 585, 124765.10.1016/j.jhydrol.2020.124765 Search in Google Scholar

Ebel, B.A., Wagenbrenner, J.W., Kinoshita, A.M., Bladon, K.D., 2022. Hydrologic recovery after wildfire: A framework of approaches, metrics, criteria, trajectories, and timescales. J. Hydrol. Hydromech., 70, 4, 388–400.10.2478/johh-2022-0033 Search in Google Scholar

Fajković, H., Ivanić, M., Nemet, I., Rončević, S., Kampić, Š., Vazdar, D.L., 2022. Heat-induced changes in soil properties: fires as cause for remobilization of chemical elements. J. Hydrol. Hydromech., 70, 4, 421–431.10.2478/johh-2022-0024 Search in Google Scholar

Godoy, L.M., Simões, L.B., Martins, M.A.S., Machado, A.I., Keizer, J.J., 2022. An exploratory study into ash mobilization using lysimeters. J. Hydrol. Hydromech., 70, 4, 432–441.10.2478/johh-2022-0035 Search in Google Scholar

Hampton, T.B., Lin, S., Basu, N.B., 2022. Forest fire effects on stream water quality at continental scales: a meta-analysis. Environmental Research Letters, 17, 6, 064003.10.1088/1748-9326/ac6a6c Search in Google Scholar

Hološ, S., Šurda, P., Lichner, Ľ., Zvala, A., Píš, V., 2022. Fireinduced changes in soil properties depend on age and type of forests. J. Hydrol. Hydromech., 70, 4, 442–449.10.2478/johh-2022-0034 Search in Google Scholar

Keesstra, S.D., Rodrigo-Comino, J., Novara, A., Giménez- Morera, A., Pulido, M., Di Prima, S., Cerdà, A., 2019. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 174, 95–103.10.1016/j.catena.2018.11.007 Search in Google Scholar

Keesstra, S., Mol, G., De Leeuw, J., Okx, J., Molenaar, C., De Cleen, M., Visser, S., 2018. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land, 7, 4, 133.10.3390/land7040133 Search in Google Scholar

Lenton, T.M., 2001. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Global Change Biology, 7, 6, 613–629.10.1046/j.1354-1013.2001.00429.x Search in Google Scholar

Li, T.L., Jeřábek, J., Winkler, J., Vaverková, M.D., Zumr, D., 2022. Exploring effects of prescribed fire on topsoil properties: a small-scale straw burning experiment. J. Hydrol. Hydromech., 70, 4, 450–461.10.2478/johh-2022-0032 Search in Google Scholar

López-Vicente, M., Cerdà, A., Kramer, H., Keesstra, S., 2021. Post-fire practices benefits on vegetation recovery and soil conservation in a Mediterranean area. Land Use Policy, 111, 105776.10.1016/j.landusepol.2021.105776 Search in Google Scholar

Lucas-Borja, M.E., Fernández, C., Plaza-Alvarez, P.A., Carrà, B.G., Zema, D.A., 2022. Variability of soil properties with fire severity in pine forests and reforested areas under Mediterranean conditions. J. Hydrol. Hydromech., 70, 4, 462–474.10.2478/johh-2022-0028 Search in Google Scholar

Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 1–2, 51–71.10.1016/S0378-1127(99)00032-8 Search in Google Scholar

Renninger, H.J., Clark, K.L., Skowronski, N., Schäfer, K.V., 2013. Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines. Trees, 27, 4, 1115–1127.10.1007/s00468-013-0861-5 Search in Google Scholar

Rust, A.J., Hogue, T.S., Saxe, S., McCray, J., 2018. Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 27, 3, 203–216.10.1071/WF17115 Search in Google Scholar

Sanin, F.A.M., Alias, N.E., Kanniah, K.D., Kadir, M.A.A., Mohammad, I.I., Rasnavi, P., 2022. Open data application to evaluate exposure of wildfire to water resources: A case study in Johor, Malaysia. J. Hydrol. Hydromech., 70, 4, 475–480.10.2478/johh-2022-0029 Search in Google Scholar

Santos, M.G., Mountney, N.P., Peakall, J., 2017. Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation. Journal of the Geological Society, 174, 3, 393–404.10.1144/jgs2016-063 Search in Google Scholar

Schumm, S.A., 1968. Speculations concerning paleohydrologic controls of terrestrial sedimentation. Geological Society of America Bulletin, 79, 11, 1573–1588.10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2 Search in Google Scholar

Thomsen, M., Faber, J.H., Sorensen, P.B., 2012. Soil ecosystem health and services – Evaluation of ecological indicators susceptible to chemical stressors. Ecological Indicators, 16, 67–75.10.1016/j.ecolind.2011.05.012 Search in Google Scholar

Thonicke, K., Prentice, I.C., Hewitt, C., 2005. Modeling glacial-interglacial changes in global fire regimes and trace gas emissions. Global Biogeochemical Cycles, 19, 3, GB3008.10.1029/2004GB002278 Search in Google Scholar

Wang, X., van der Kaars, S., Kershaw, P., Bird, M., Jansen, F., 1999. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 3–4, 241–256.10.1016/S0031-0182(98)00169-2 Search in Google Scholar

Zema, D.A., 2021. Postfire management impacts on soil hydrology. Current Opinion in Environmental Science & Health, 21, 100252.10.1016/j.coesh.2021.100252 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo