Cite

Exposure of soil constituents to elevated temperatures during wildfire can significantly affect their properties and consequently, increase the mobility of the bound contaminants. To estimate the potential of wildfires to influence metal remobilization from the burned soil due to the changes in cation exchange capacity (CEC) after organic matter combustion and mineral alteration and degradation, changes in soil properties after exposure to different temperatures was investigated. This was accomplished through analysis of geochemical, mineralogical and surface physicochemical properties of a soil sample exposed to different temperatures in a laboratory. Heating the soil sample at 200 °C, 500 °C and 850 °C resulted in an increase in pH (from 5.9 to 12.3), decrease in cation exchange capacity (from 47.2 to 7.3 cmol+kg−1) and changes in the specific surface area (observed only at 500 °C), that are associated with structural modifications of clay minerals and ferromagnetic minerals. Extraction analysis showed the increase in the concentration of almost all analysed elements (Al, Cd, Co, Cr, Fe, Mn and Zn) in soil eluates. The observed increase, following high– temperature heating (500 °C and 850 °C), was as much as 15 times higher (e.g., Al), compared to the native soil sample (25 °C). This strongly indicates that wildfire can act as a trigger for remobilization of heavy metals.

eISSN:
1338-4333
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other