Open Access

Experimental investigation of the effect of vegetation on dam break flood waves


Cite

Elkholy, M., Larocque, L.A., Chaudhry, M.H., Imran, J., 2016. Experimental investigations of partial-breach dam-break flows. J. Hydraul. Eng., 142, 1–12. https://doi.org/10.1061/(ASCE)HY.1943-7900.000118510.1061/(ASCE)HY.1943-7900.0001185Search in Google Scholar

Ferrari, A., Fraccarollo, L., Dumbser, M., Toro, E.F., Armanini, A., 2010. Three-dimensional flow evolution after a dam break. J. Fluid Mech., 663, 456–477. https://doi.org/10.1017/S002211201000359910.1017/S0022112010003599Search in Google Scholar

Güney, M.S., Tayfur, G., Bombar, G., Elci, S., 2014. Distorted physical model to study sudden partial dam break flows in an urban area. J. Hydraul. Eng., 140, 05014006. https://doi.org/10.1061/(ASCE)HY.1943-7900.000092610.1061/(ASCE)HY.1943-7900.0000926Search in Google Scholar

Haltas, I., Tayfur, G., Elci, S., 2016. Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Nat. Hazards, 81, 2103–2119. https://doi.org/10.1007/s11069-016-2175-610.1007/s11069-016-2175-6Search in Google Scholar

He, Z., Wu, T., Weng, H., Hu, P., Wu, G., 2017. Numerical simulation of dam-break flow and bed change considering the vegetation effects. Int. J. Sediment Res., 32, 105–120. https://doi.org/10.1016/j.ijsrc.2015.04.00410.1016/j.ijsrc.2015.04.004Search in Google Scholar

Hooshyaripor, F., Tahershamsi, A., Razi, S., 2017. Dam break flood wave under different reservoir’s capacities and lengths. Sadhana - Acad. Proc. Eng. Sci., 42, 1557–1569. https://doi.org/10.1007/s12046-017-0693-x10.1007/s12046-017-0693-xSearch in Google Scholar

Ismail, H., Abd Wahab, A.K., Alias, N.E., 2012. Determination of mangrove forest performance in reducing tsunami run-up using physical models. Nat. Hazards, 63, 939–963. https://doi.org/10.1007/s11069-012-0200-y10.1007/s11069-012-0200-ySearch in Google Scholar

Kocaman, S., Ozmen-Cagatay, H., 2015. Investigation of dam-break induced shock waves impact on a vertical wall. J. Hydrol., 525, 1–12. https://doi.org/10.1016/j.jhydrol.2015.03.04010.1016/j.jhydrol.2015.03.040Search in Google Scholar

LaRocque, L.A., Imran, J., Chaudhry, M.H., 2013. Experimental and numerical investigations of two-dimensional dam-break flows. J. Hydraul. Eng., 139, 569–579. https://doi.org/10.1061/(asce)hy.1943-7900.000070510.1061/(ASCE)HY.1943-7900.0000705Search in Google Scholar

Lauber, G., Hager, W.H., 1998. Experiments to dambreak wave: Horizontal channel. J. Hydraul. Res., 36, 291–307. https://doi.org/10.1080/0022168980949862010.1080/00221689809498620Search in Google Scholar

Liu, L., Sun, J., Lin, B., Lu, L., 2018. Building performance in dam-break flow–an experimental study. Urban Water J., 15, 251–258. https://doi.org/10.1080/1573062X.2018.143386210.1080/1573062X.2018.1433862Search in Google Scholar

Ozmen-Cagatay, H., Kocaman, S., 2010. Dam-break flows during initial stage using SWE and RANS approaches. J. Hydraul. Res., 48, 603–611. https://doi.org/10.1080/00221686.2010.50734210.1080/00221686.2010.507342Search in Google Scholar

Ozmen-Cagatay, H., Kocaman, S., Guzel, H., 2014. Investigation of dam-break flood waves in a dry channel with a hump. J. Hydro-Environment Res., 8, 304–315. https://doi.org/10.1016/j.jher.2014.01.00510.1016/j.jher.2014.01.005Search in Google Scholar

Soares-Frazão, S., 2007. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res., 45, 19–26. https://doi.org/10.1080/00221686.2007.952182910.1080/00221686.2007.9521829Search in Google Scholar

Soares-Frazão, S., Zech, Y., 2008. Dam-break flow through an idealised city. J. Hydraul. Res., 46, 648–658. https://doi.org/10.3826/jhr.2008.316410.3826/jhr.2008.3164Search in Google Scholar

Tayfur, G., Güney, M.Ş., Haltaş, İ., Elçi, Ş., Bombar, G., 2013. Experimental and Numerical Investigation of Dam Break Floods - GIS Applications for Dams. TUBITAK Project No : 110M240 (Final Report). (In Turkish.)Search in Google Scholar

Tiwari, H., Khan, A., Sharma, N., 2016. Emerging methodologies for turbulence characterization in river dynamics study. In: Sharma, N. (Ed.): River System Analysis and Management. Springer, pp. 167–186. ISBN: 9811014728. ISBN: 9789811014727.10.1007/978-981-10-1472-7_9Search in Google Scholar

Zhang, M.L., Xu, Y.Y., Qiao, Y., Jiang, H.Z., Zhang, Z.Z., Zhang, G.S., 2016. Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect. J. Hydrodyn., 28, 23–32. https://doi.org/10.1016/S1001-6058(16)60604-210.1016/S1001-6058(16)60604-2Search in Google Scholar

Zhang, T., Fang, F., Feng, P., 2017. Simulation of dam/levee-break hydrodynamics with a three-dimensional implicit unstructured-mesh finite element model. Environ. Fluid Mech., 17, 959–979. https://doi.org/10.1007/s10652-017-9530-310.1007/s10652-017-9530-3Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other