Open Access

Smart needle electrical bioimpedance to provide information on needle tip relationship to target nerve prior to local anesthetic deposition in peripheral nerve block (USgPNB) procedures


Cite

Ultrasound guided peripheral nerve block (USgPNB) refers to anaesthetic techniques to deposit local anesthetic next to nerves, permitting painful surgery without necessitating general anesthesia. Needle tip position prior to local anesthetic deposition is a key determinant of block success and safety. Nerve puncture and intra-neural injection of local anesthetic can cause permanent nerve injury. Currently ultrasound guidance is not sufficiently sensitive to reliably detect needle to nerve proximity. Feedback with bioimpedance data from the smart needle tip might provide the anesthetist with information as to the relationship between the needle tip and the target nerve prior to local anesthetic deposition.

Bioimpedance using a smart needle integrated with a two-electrode impedance sensor has been developed to determine needle to nerve proximity during USgPNB. Having obtained all necessary ethical and regulatory approvals, in vivo data on brachial plexus, vagus, femoral and sciatic nerves were obtained from seven pig models using the smart needle bioimpedance system. The excision and histological analysis of above peripheral nerves and observation of the architecture and structure of nerves by means of histology allow the calculation of the ratios of connective tissue to neural tissue to determine the influence of this variable on absolute impedance. The ratio results give extra clinical data and explain the hetrogeneity of impedance data in the pig models and the hypothesis that connective tissue with intra-neural fat has higher impedance than neural tissue.