Open Access

Machine learning for stem cell differentiation and proliferation classification on electrical impedance spectroscopy


Cite

Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019 Jul;6(0):19–9. https://doi.org/10.21037/sci.2019.06.04RajabzadehNFathiEFarahzadiR.Stem cell-based regenerative medicineStem Cell Investig2019Jul60199https://doi.org/10.21037/sci.2019.06.0410.21037/sci.2019.06.04669107431463312Search in Google Scholar

Nguyen PK, Neofytou E, Rhee J-W, Wu JC. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiol. 2016 Nov 1;1(8):953–16. https://doi.org/10.1001/jamacardio.2016.2750NguyenPKNeofytouERheeJ-WWuJC.Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular DiseaseJAMA Cardiol2016Nov11895316https://doi.org/10.1001/jamacardio.2016.275010.1001/jamacardio.2016.2750537846327579998Search in Google Scholar

Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of Stem Cell Therapy for Spinal Cord Injury: Human Embryonic Stem Cells, Endogenous Neural Stem Cells or Induced Pluripotent Stem Cells? Stem Cells. 2009;28(1):93–99. https://doi.org/10.1002/stem.253RonaghiMErcegSMoreno-ManzanoVStojkovicM.Challenges of Stem Cell Therapy for Spinal Cord Injury: Human Embryonic Stem Cells, Endogenous Neural Stem Cells or Induced Pluripotent Stem Cells?Stem Cells20092819399https://doi.org/10.1002/stem.25310.1002/stem.25319904738Search in Google Scholar

Gamal W, Wu H, Underwood I, Jia J, Smith S, Bagnaninchi PO. Impedance-based cellular assays for regenerative medicine. Phil Trans R Soc B. 2018 May 21;373(1750):20170226. https://doi.org/10.1098/rstb.2017.0226GamalWWuHUnderwoodIJiaJSmithSBagnaninchiPO.Impedance-based cellular assays for regenerative medicinePhil Trans R Soc B2018May21373175020170226. https://doi.org/10.1098/rstb.2017.022610.1098/rstb.2017.0226597444929786561Search in Google Scholar

Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, et al. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle. 2014 Oct 28;8(16):2608–12. https://doi.org/10.4161/cc.8.16.9353LeeASTangCCaoFXieXvan der BogtKHwangAEffects of cell number on teratoma formation by human embryonic stem cellsCell Cycle2014Oct28816260812https://doi.org/10.4161/cc.8.16.935310.4161/cc.8.16.9353286616819597339Search in Google Scholar

Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sciences. 2018 Sep;8(9):177–37. https://doi.org/10.3390/brainsci8090177HussainRZubairHPursellSShahabM.Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic ApproachesBrain Sciences2018Sep8917737https://doi.org/10.3390/brainsci809017710.3390/brainsci8090177616271930223579Search in Google Scholar

Gage FH, Temple S. Neural Stem Cells: Generating and Regenerating the Brain. Neuron. Elsevier Inc; 2013 Oct 30;80(3):588–601. https://doi.org/10.1016/j.neuron.2013.10.037GageFHTempleS.Neural Stem Cells: Generating and Regenerating the BrainNeuron. Elsevier Inc2013Oct30803588601https://doi.org/10.1016/j.neuron.2013.10.03710.1016/j.neuron.2013.10.03724183012Search in Google Scholar

Xiao C, Luong JHT. On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS). Biotechnol Prog. American Chemical Society (ACS); 2003 Jun 6;19(3):1000–5. https://doi.org/10.1021/bp025733xXiaoCLuongJHT.On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS)Biotechnol Prog. American Chemical Society (ACS)2003Jun619310005https://doi.org/10.1021/bp025733x10.1021/bp025733x12790667Search in Google Scholar

Krinke D, Jahnke H-G, Mack TGA, Hirche A, Striggow F, Robitzki AA. A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring. Biosensors and Bioelectronics. Elsevier B.V; 2010 Sep 15;26(1):162–8. https://doi.org/10.1016/j.bios.2010.06.002KrinkeDJahnkeH-GMackTGAHircheAStriggowFRobitzkiAA.A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoringBiosensors and BioelectronicsElsevier B.V2010Sep152611628https://doi.org/10.1016/j.bios.2010.06.00210.1016/j.bios.2010.06.00220591644Search in Google Scholar

Hug TS. Biophysical Methods for Monitoring Cell-Substrate Interactions in Drug Discovery. ASSAY and Drug Development Technologies. 2003 Jun;1(3):479–88. https://doi.org/10.1089/154065803322163795HugTS.Biophysical Methods for Monitoring Cell-Substrate Interactions in Drug DiscoveryASSAY and Drug Development Technologies2003Jun1347988https://doi.org/10.1089/15406580332216379510.1089/15406580332216379515090185Search in Google Scholar

Jahnke H-G, Braesigk A, Mack TGA, Pönick S, Striggow F, Robitzki AA. Impedance spectroscopy based measurement system for quantitative and label-free real-time monitoring of tauopathy in hippocampal slice cultures. Biosensors and Bioelectronics. Elsevier B.V; 2012 Feb 15;32(1):250–8. https://doi.org/10.1016/j.bios.2011.12.026JahnkeH-GBraesigkAMackTGAPönickSStriggowFRobitzkiAA.Impedance spectroscopy based measurement system for quantitative and label-free real-time monitoring of tauopathy in hippocampal slice culturesBiosensors and BioelectronicsElsevier B.V2012Feb153212508https://doi.org/10.1016/j.bios.2011.12.02610.1016/j.bios.2011.12.02622221799Search in Google Scholar

Haas S, Jahnke H-G, Glass M, Azendorf R, Schmidt S, Robitzki AA. Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chip. Lab Chip. 2010;10(21):2965–7. https://doi.org/10.1039/c0lc00008fHaasSJahnkeH-GGlassMAzendorfRSchmidtSRobitzkiAA.Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chipLab Chip2010102129657https://doi.org/10.1039/c0lc00008f10.1039/c0lc00008f20835426Search in Google Scholar

Seidel D, Obendorf J, Englich B, Jahnke H-G, Semkova V, Haupt S, et al. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosensors and Bioelectronics. Elsevier; 2016 Dec 15;86(C):277–86. https://doi.org/10.1016/j.bios.2016.06.056SeidelDObendorfJEnglichBJahnkeH-GSemkovaVHauptSImpedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arraysBiosensors and BioelectronicsElsevier2016Dec1586C27786https://doi.org/10.1016/j.bios.2016.06.05610.1016/j.bios.2016.06.05627387257Search in Google Scholar

Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J. A review of impedance measurements of whole cells. Biosensors and Bioelectronics. 2016 Mar;77:824–36. https://doi.org/10.1016/j.bios.2015.10.027XuYXieXDuanYWangLChengZChengJ.A review of impedance measurements of whole cellsBiosensors and Bioelectronics2016Mar7782436https://doi.org/10.1016/j.bios.2015.10.02710.1016/j.bios.2015.10.02726513290Search in Google Scholar

Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. WIREs Data Mining Knowl Discov. 2019 Feb 22;9(4):2672–13. https://doi.org/10.1002/widm.1312HolzingerALangsGDenkHZatloukalKMüllerH.Causability and explainability of artificial intelligence in medicineWIREs Data Mining Knowl Discov2019Feb2294267213https://doi.org/10.1002/widm.131210.1002/widm.1312701786032089788Search in Google Scholar

Tronstad C, Strand-Amundsen R. Possibilities in the application of machine learning on bioimpedance time-series. Journal of Electrical Bioimpedance. 2019 Jun 26;10(1):24–33. https://doi.org/10.2478/joeb-2019-0004TronstadCStrand-AmundsenR.Possibilities in the application of machine learning on bioimpedance time-seriesJournal of Electrical Bioimpedance2019Jun261012433https://doi.org/10.2478/joeb-2019-000410.2478/joeb-2019-0004753120933584879Search in Google Scholar

Strand-Amundsen RJ, Tronstad C, Reims HM, Reinholt FP, Høgetveit JO, Tønnessen TI. Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiol Meas. 2018 Oct 1;39(10):105011–24. https://doi.org/10.1088/1361-6579/aae0eaStrand-AmundsenRJTronstadCReimsHMReinholtFPHøgetveitJOTønnessenTI.Machine learning for intraoperative prediction of viability in ischemic small intestinePhysiol Meas2018Oct1391010501124https://doi.org/10.1088/1361-6579/aae0ea10.1088/1361-6579/aae0ea30207981Search in Google Scholar

Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods. Nature Publishing Group; 2006 Jul 21;3(8):637–46. https://doi.org/10.1038/nmeth902LudwigTEBergendahlVLevensteinMEYuJProbascoMDThomsonJA.Feeder-independent culture of human embryonic stem cellsNat Methods. Nature Publishing Group2006Jul213863746https://doi.org/10.1038/nmeth90210.1038/nmeth90216862139Search in Google Scholar

Li W, Sun W, Zhang Y, the WWPO, 2011. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. National Acad. Sciences. https://doi.org/10.1073/pnas.1014041108LiWSunWZhangYthe WWPO2011Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitorsNational Acad. Scienceshttps://doi.org/10.1073/pnas.101404110810.1073/pnas.1014041108310098821525408Search in Google Scholar

Graves A, Fernández S, Gomez F, Schmidhuber J. Connectionist temporal classification. New York, USA: ACM Press; 2006. pp. 369–76.GravesAFernándezSGomezFSchmidhuberJ.Connectionist temporal classificationNew York, USAACM Press20063697610.1145/1143844.1143891Search in Google Scholar

Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks. 2005 Jul;18(5-6):602–10. https://doi.org/10.1016/j.neunet.2005.06.042GravesASchmidhuberJ.Framewise phoneme classification with bidirectional LSTM and other neural network architecturesNeural Networks2005Jul185–660210https://doi.org/10.1016/j.neunet.2005.06.04210.1016/j.neunet.2005.06.042Search in Google Scholar

Burger M, Neubauer A. Analysis of Tikhonov regularization for function approximation by neural networks. Neural Networks. 2003 Jan;16(1):79–90. https://doi.org/10.1016/s0893-6080(02)00167-3BurgerMNeubauerA.Analysis of Tikhonov regularization for function approximation by neural networksNeural Networks2003Jan1617990https://doi.org/10.1016/s0893-6080(02)00167-310.1016/S0893-6080(02)00167-3Search in Google Scholar

Gal Y, Ghahramani Z. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. NIPS, Barcelona, Spain. 2016.GalYGhahramaniZ.A Theoretically Grounded Application of Dropout in Recurrent Neural NetworksNIPSBarcelona, Spain2016Search in Google Scholar