[Alademomi, A.S., Okolie, C.J., Daramola, O.E., Akinnusi, S.A., Adediran, E., Olanrewaju, H.O., Alabi, A.O., Salami, T.J., Odumosu, J. (2022). The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl Geomat 14, 299–314. https://doi.org/10.1007/s12518-022-00434-2]Search in Google Scholar
[Artis, D.A., Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4): 313–329.]Search in Google Scholar
[Athukorala, D., Murayama, Y. (2020). Spatial variation of land use/cover composition and impact on surface urban heat island in a tropical sub-Saharan City of Accra, Ghana. Sustainability 12(19). https://doi.org/10.3390/SU12197953]Search in Google Scholar
[Balew, A., Korme, T., (2020). Monitoring land surface temperature in Bahir Dar city and its surroundings using Landsat images. Egypt J Remote Sens Space Sci https://doi.org/10.1016/j.ejrs.2020.02.001]Search in Google Scholar
[Biney, E., Forkuo, E.K., Poku-Boansi, M,. Hackman, K.O., Harris, E., Asare, Y.M., Yankey, D.B., Annan, E., Agbenorhevi, A.E. (2024). Analyzing the spatio-temporal pattern of urban growth and its influence on urban heat islands in the Sekondi-Takoradi metropolis. Ghana. Sci Afr 26: e02366. https://doi.org/10.1016/j.sciaf.2024.e02366]Search in Google Scholar
[Carlson, T.N., Ripley, D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens Environ 62:241-252. https://doi.org/10.1016/S0034-4257(97)00104-1]Search in Google Scholar
[Cetin, M., Ozenen Kavlak, M., Senyel Kurkcuoglu, M.A., Bilge Ozturk, G., Nihan Cabuk, S., Cabuk, A. (2024). Determination of land surface temperature and urban heat island effects with remote sensing capabilities: the case of Kayseri, Türkiye. Nat Hazards 120, 5509–5536 (2024). https://doi.org/10.1007/s11069-024-06431-5]Search in Google Scholar
[Chen, L., Li, M., Huang, F., Xu, S. (2013). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, 2013, pp. 840-845.]Search in Google Scholar
[Chen, X.L., Zhao, H.M., Li, P.X., Yi, Z.Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2): 133–146. https://doi.org/10.1016/j.rse.2005.11.016]Search in Google Scholar
[Chen, X., Zhang, Y. (2017). Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain Cities Soc. 32: 87-99. https://doi.org/10.1016/j.scs.2017.03.013]Search in Google Scholar
[Dissanayake, DMSLB, Morimoto, T., Murayama, Y., Ranagalage, M., (2019). Impact of landscape structure on the variation of land surface temperature in Sub-Saharan Region: A case study of Addis Ababa using Landsat Data (1986-2016). Sustainability 11(8). https://doi.org/10.3390/su11082257]Search in Google Scholar
[Fu, S., Wang, L., Khalil, U., Cheema, A.H., Ullah, I., Aslam, B., Tariq, A., Aslam, M., Alarifi, S.S. (2024). Prediction of surface urban heat island based on predicted consequences of urban sprawl using deep learning: A way forward for a sustainable environment. Phys Chem Earth Parts A/B/C 35: 103682. https://doi.org/10.1016/j.pce.2024.103682]Search in Google Scholar
[Ghanbari, R., Heidarimozaffar, M., Soltani, A., Arefi, H. (2023). Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. Int J Environ Sci Tech 20:2883–2902. https://doi.org/10.1007/S13762-022-04725-4]Search in Google Scholar
[Guha, S., Govil, H. (2023). Evaluating the stability of the relationship between land surface temperature and land use/land cover indices: a case study in Hyderabad city, India. Geol Ecol Landsc 1–13. https://doi.org/10.1080/24749508.2023.2182083]Search in Google Scholar
[Guha, S., Govil, H. (2022). Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto Int 37(15): 4292-4311. https://doi.org/10.1080/10106049.2021.1886339]Search in Google Scholar
[Guha, S. (2021). Dynamic seasonal analysis on LST-NDVI relationship and ecological health of Raipur City, India. Ecosyst Health Sust 7(1): 1927852. https://doi.org/10.1080/20964129.2021.1927852]Search in Google Scholar
[Guha, S., Govil, H. (2021). A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices. Eur J Remote Sens 54(1): 487-512. https://doi.org/10.1080/22797254.2021.1965496]Search in Google Scholar
[Guha, S., Govil, H., Gill, N., Dey, A. (2020). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quatern Int https://doi.org/10.1016/j.quaint.2020.06.041]Search in Google Scholar
[Guha, S., Govil, H., Taloor, A.K., Gill, N., Dey, A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geod Geodyn 13(1): 72-82. https://doi.org/10.1016/j.geog.2021.05.002]Search in Google Scholar
[Hidalgo-García, D., Arco-Díaz, J. (2022). Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustain Cities Soc 87: 104166. https://doi.org/10.1016/j.scs.2022.104166, http://earthexplorer.usgs.gov/]Search in Google Scholar
[Jamei, Y., Rajagopalan, P., Sun, Q.C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Sci Total Environ 659: 1335-1351. https://doi.org/10.1016/j.scitotenv.2018.12.308]Search in Google Scholar
[Jin, K., Qin, M., Tang, R., Huang, X., Hao, L., Sun, G. (2023). Urban-rural interface dominates the effects of urbanization on watershed energy and water balances in Southern China. Landsc Ecol. https://doi.org/10.1007/S10980-023-01648-4]Search in Google Scholar
[Khan, M., Qasim, M., Tahir, A.A., Farooqi, A. (2023). Machine learning-based assessment and simulation of land use modification effects on seasonal and annual land surface temperature variations. Heliyon 9:e23043. https://doi.org/10.1016/j.heliyon.2023.e23043]Search in Google Scholar
[Kumar, B.P., Anusha, B.N., Raghu Babu, K., Padma Sree, P. (2023). Identification of climate change impact and thermal comfort zones in semi-arid regions of AP, India using LST and NDBI techniques. J Cleaner Prod 407: 137175.https://doi.org/10.1016/j.jclepro.2023.137175]Search in Google Scholar
[Li, J., Song C, Cao L, Meng X, Wu J (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens Environ 115: 3249–3263.]Search in Google Scholar
[Liang, X., Ji, X., Guo, N., Meng, L., (2021). Assessment of urban heat islands for land use based on urban planning: a case study in the main urban area of Xuzhou City, China. Environ Earth Sci 80. https://doi.org/10.1007/S12665-021-09588-5]Search in Google Scholar
[Liu, S., Li, X., Chen, L., Zhao, Q., Zhao, C., Hu, X., Li, J. (2022). A New Approach to Investigate the Spatially Heterogeneous Cooling Effects of Landscape Pattern. Land 11(2). https://doi.org/10.3390/land11020239]Search in Google Scholar
[Manjunath, D.R., Jagadeesh, P. (2024). Dynamics of urban development patterns on thermal distributions and their implications on water spread areas of Vellore, Tamil Nadu, India. Front Sustain Cities 6:1462092. https://doi.org/10.3389/frsc.2024.1462092]Search in Google Scholar
[Quattrochi, D.A., Luvall, J.C. (2014). Thermal Infrared Remote Sensing For Analysis of Landscape Ecological Processes: Current Insights and Trends. Scale Issues in Remote Sensing, 9781118305041, 34–60. https://doi.org/10.1002/9781118801628.CH03]Search in Google Scholar
[Rimal, B., Sharma, R., Kunwar, R., Keshtkar, H., Stork, N.E., Rijal, S., Rahman, S.A., Baral, H. (2019). Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst Serv 38: 100963. https://doi.org/10.1016/J.ECOSER.2019.100963]Search in Google Scholar
[Santhosh, L.G., Shilpa, D.N. (2023). Assessment of LULC change dynamics and its relationship with LST and spectral indices in a rural area of Bengaluru district, Karnataka India. Remote Sens Appl Soc Environ 29: 100886. https://doi.org/10.1016/j.rsase.2022.100886]Search in Google Scholar
[Senanayake, I.P., Welivitiya, WDDP, Nadeeka, P.M. (2013). Remote sensing-based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Clim 5: 19–35. https://doi.org/10.1016/J.UCLIM.2013.07.004]Search in Google Scholar
[Sobrino, J.A., Raissouni, N., Li, Z. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2): 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1]Search in Google Scholar
[Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens Environ 9: 434–440. https://doi:10.1016/j.rse.2004.02.003]Search in Google Scholar
[Son, N.T., Chen, C.F., Chen, C.R. (2020). Urban expansion and its impacts on the local temperature in San Salvador, El Salvador. Urban Clim 32: 100617. https://doi.org/10.1016/j.uclim.2020.100617]Search in Google Scholar
[Song, Y., Song, X., Shao, G. (2020). Effects of green space patterns on the urban thermal environment at multiple spatial -temp. Sustainability 12(17). https://doi.org/10.3390/S]Search in Google Scholar
[Sridhar, N., Bhole, V. (2018). Seasonal Analysis of Urban Heat Island of Greater Hyderabad Using Thermal Remote Sensing. J Remote Sens GIS 9(1): 49–56.]Search in Google Scholar
[Suneetha, Y., Reddy, M.A. (2024). Spatial and Temporal analysis of Landsat data to Retrieve the NDWI, NDVI and Land Surface Temperature by thermal remote sensor: A case study of Hyderabad Metropolitan City, Telangana. E3S Web Conf., 472: 02003. https://doi.org/10.1051/e3sconf/202447202003]Search in Google Scholar
[Tiwari, A.K., Kanchan, R. (2024). Analytical study on the relationship among land surface temperature, land use/land cover and spectral indices using geospatial techniques. Discov Environ 2, 1 (2024). https://doi.org/10.1007/s44274-023-00021-1]Search in Google Scholar
[Ullah, W., Ahmad, K., Ullah, S., Tahir, A.A., Javed, M.F., Nazir, A., Abbasi, A.M., Aziz, M., Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon 9:e13322. https://doi.org/10.1016/j.heliyon.2023.e13322]Search in Google Scholar
[Weng, Q.H., Lu, D.S., Schubring, J. (2004). Estimation of Land Surface Temperature– Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens Environ 89: 467-483. https://doi:10.1016/j.rse.2003.11.005]Search in Google Scholar
[Zhang, Y., Odeh, I.O.A., Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4): 256-264. https://doi.org/10.1016/j.jag.2009.03.001]Search in Google Scholar
[Zhao, Q., Haseeb, M., Wang, X., Zheng, X., Tahir, Z., Ghafoor, S., Mubbin, M., Kumar, R.P., Purohit, S., Soufan, W., Almutairi, K.F. (2024). Evaluation of Land Use Land Cover Changes in Response to Land Surface Temperature With Satellite Indices and Remote Sensing Data. Rangeland Ecol Manag 96: 183-196. https://doi.org/10.1016/j.rama.2024.07.003]Search in Google Scholar
[Zha, Y., Gao, J., Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3): 583-594. https://doi.org/10.1080/01431160304987]Search in Google Scholar