Open Access

Investigating Thermal Stability in Hyderabad City, India

 and   
Dec 25, 2024

Cite
Download Cover

Alademomi, A.S., Okolie, C.J., Daramola, O.E., Akinnusi, S.A., Adediran, E., Olanrewaju, H.O., Alabi, A.O., Salami, T.J., Odumosu, J. (2022). The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl Geomat 14, 299–314. https://doi.org/10.1007/s12518-022-00434-2Search in Google Scholar

Artis, D.A., Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4): 313–329.Search in Google Scholar

Athukorala, D., Murayama, Y. (2020). Spatial variation of land use/cover composition and impact on surface urban heat island in a tropical sub-Saharan City of Accra, Ghana. Sustainability 12(19). https://doi.org/10.3390/SU12197953Search in Google Scholar

Balew, A., Korme, T., (2020). Monitoring land surface temperature in Bahir Dar city and its surroundings using Landsat images. Egypt J Remote Sens Space Sci https://doi.org/10.1016/j.ejrs.2020.02.001Search in Google Scholar

Biney, E., Forkuo, E.K., Poku-Boansi, M,. Hackman, K.O., Harris, E., Asare, Y.M., Yankey, D.B., Annan, E., Agbenorhevi, A.E. (2024). Analyzing the spatio-temporal pattern of urban growth and its influence on urban heat islands in the Sekondi-Takoradi metropolis. Ghana. Sci Afr 26: e02366. https://doi.org/10.1016/j.sciaf.2024.e02366Search in Google Scholar

Carlson, T.N., Ripley, D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens Environ 62:241-252. https://doi.org/10.1016/S0034-4257(97)00104-1Search in Google Scholar

Cetin, M., Ozenen Kavlak, M., Senyel Kurkcuoglu, M.A., Bilge Ozturk, G., Nihan Cabuk, S., Cabuk, A. (2024). Determination of land surface temperature and urban heat island effects with remote sensing capabilities: the case of Kayseri, Türkiye. Nat Hazards 120, 5509–5536 (2024). https://doi.org/10.1007/s11069-024-06431-5Search in Google Scholar

Chen, L., Li, M., Huang, F., Xu, S. (2013). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, 2013, pp. 840-845.Search in Google Scholar

Chen, X.L., Zhao, H.M., Li, P.X., Yi, Z.Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2): 133–146. https://doi.org/10.1016/j.rse.2005.11.016Search in Google Scholar

Chen, X., Zhang, Y. (2017). Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain Cities Soc. 32: 87-99. https://doi.org/10.1016/j.scs.2017.03.013Search in Google Scholar

Dissanayake, DMSLB, Morimoto, T., Murayama, Y., Ranagalage, M., (2019). Impact of landscape structure on the variation of land surface temperature in Sub-Saharan Region: A case study of Addis Ababa using Landsat Data (1986-2016). Sustainability 11(8). https://doi.org/10.3390/su11082257Search in Google Scholar

Fu, S., Wang, L., Khalil, U., Cheema, A.H., Ullah, I., Aslam, B., Tariq, A., Aslam, M., Alarifi, S.S. (2024). Prediction of surface urban heat island based on predicted consequences of urban sprawl using deep learning: A way forward for a sustainable environment. Phys Chem Earth Parts A/B/C 35: 103682. https://doi.org/10.1016/j.pce.2024.103682Search in Google Scholar

Ghanbari, R., Heidarimozaffar, M., Soltani, A., Arefi, H. (2023). Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. Int J Environ Sci Tech 20:2883–2902. https://doi.org/10.1007/S13762-022-04725-4Search in Google Scholar

Guha, S., Govil, H. (2023). Evaluating the stability of the relationship between land surface temperature and land use/land cover indices: a case study in Hyderabad city, India. Geol Ecol Landsc 1–13. https://doi.org/10.1080/24749508.2023.2182083Search in Google Scholar

Guha, S., Govil, H. (2022). Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto Int 37(15): 4292-4311. https://doi.org/10.1080/10106049.2021.1886339Search in Google Scholar

Guha, S. (2021). Dynamic seasonal analysis on LST-NDVI relationship and ecological health of Raipur City, India. Ecosyst Health Sust 7(1): 1927852. https://doi.org/10.1080/20964129.2021.1927852Search in Google Scholar

Guha, S., Govil, H. (2021). A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices. Eur J Remote Sens 54(1): 487-512. https://doi.org/10.1080/22797254.2021.1965496Search in Google Scholar

Guha, S., Govil, H., Gill, N., Dey, A. (2020). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quatern Int https://doi.org/10.1016/j.quaint.2020.06.041Search in Google Scholar

Guha, S., Govil, H., Taloor, A.K., Gill, N., Dey, A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geod Geodyn 13(1): 72-82. https://doi.org/10.1016/j.geog.2021.05.002Search in Google Scholar

Hidalgo-García, D., Arco-Díaz, J. (2022). Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustain Cities Soc 87: 104166. https://doi.org/10.1016/j.scs.2022.104166, http://earthexplorer.usgs.gov/Search in Google Scholar

Jamei, Y., Rajagopalan, P., Sun, Q.C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Sci Total Environ 659: 1335-1351. https://doi.org/10.1016/j.scitotenv.2018.12.308Search in Google Scholar

Jin, K., Qin, M., Tang, R., Huang, X., Hao, L., Sun, G. (2023). Urban-rural interface dominates the effects of urbanization on watershed energy and water balances in Southern China. Landsc Ecol. https://doi.org/10.1007/S10980-023-01648-4Search in Google Scholar

Khan, M., Qasim, M., Tahir, A.A., Farooqi, A. (2023). Machine learning-based assessment and simulation of land use modification effects on seasonal and annual land surface temperature variations. Heliyon 9:e23043. https://doi.org/10.1016/j.heliyon.2023.e23043Search in Google Scholar

Kumar, B.P., Anusha, B.N., Raghu Babu, K., Padma Sree, P. (2023). Identification of climate change impact and thermal comfort zones in semi-arid regions of AP, India using LST and NDBI techniques. J Cleaner Prod 407: 137175.https://doi.org/10.1016/j.jclepro.2023.137175Search in Google Scholar

Li, J., Song C, Cao L, Meng X, Wu J (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens Environ 115: 3249–3263.Search in Google Scholar

Liang, X., Ji, X., Guo, N., Meng, L., (2021). Assessment of urban heat islands for land use based on urban planning: a case study in the main urban area of Xuzhou City, China. Environ Earth Sci 80. https://doi.org/10.1007/S12665-021-09588-5Search in Google Scholar

Liu, S., Li, X., Chen, L., Zhao, Q., Zhao, C., Hu, X., Li, J. (2022). A New Approach to Investigate the Spatially Heterogeneous Cooling Effects of Landscape Pattern. Land 11(2). https://doi.org/10.3390/land11020239Search in Google Scholar

Manjunath, D.R., Jagadeesh, P. (2024). Dynamics of urban development patterns on thermal distributions and their implications on water spread areas of Vellore, Tamil Nadu, India. Front Sustain Cities 6:1462092. https://doi.org/10.3389/frsc.2024.1462092Search in Google Scholar

Quattrochi, D.A., Luvall, J.C. (2014). Thermal Infrared Remote Sensing For Analysis of Landscape Ecological Processes: Current Insights and Trends. Scale Issues in Remote Sensing, 9781118305041, 34–60. https://doi.org/10.1002/9781118801628.CH03Search in Google Scholar

Rimal, B., Sharma, R., Kunwar, R., Keshtkar, H., Stork, N.E., Rijal, S., Rahman, S.A., Baral, H. (2019). Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst Serv 38: 100963. https://doi.org/10.1016/J.ECOSER.2019.100963Search in Google Scholar

Santhosh, L.G., Shilpa, D.N. (2023). Assessment of LULC change dynamics and its relationship with LST and spectral indices in a rural area of Bengaluru district, Karnataka India. Remote Sens Appl Soc Environ 29: 100886. https://doi.org/10.1016/j.rsase.2022.100886Search in Google Scholar

Senanayake, I.P., Welivitiya, WDDP, Nadeeka, P.M. (2013). Remote sensing-based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Clim 5: 19–35. https://doi.org/10.1016/J.UCLIM.2013.07.004Search in Google Scholar

Sobrino, J.A., Raissouni, N., Li, Z. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2): 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1Search in Google Scholar

Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens Environ 9: 434–440. https://doi:10.1016/j.rse.2004.02.003Search in Google Scholar

Son, N.T., Chen, C.F., Chen, C.R. (2020). Urban expansion and its impacts on the local temperature in San Salvador, El Salvador. Urban Clim 32: 100617. https://doi.org/10.1016/j.uclim.2020.100617Search in Google Scholar

Song, Y., Song, X., Shao, G. (2020). Effects of green space patterns on the urban thermal environment at multiple spatial -temp. Sustainability 12(17). https://doi.org/10.3390/SSearch in Google Scholar

Sridhar, N., Bhole, V. (2018). Seasonal Analysis of Urban Heat Island of Greater Hyderabad Using Thermal Remote Sensing. J Remote Sens GIS 9(1): 49–56.Search in Google Scholar

Suneetha, Y., Reddy, M.A. (2024). Spatial and Temporal analysis of Landsat data to Retrieve the NDWI, NDVI and Land Surface Temperature by thermal remote sensor: A case study of Hyderabad Metropolitan City, Telangana. E3S Web Conf., 472: 02003. https://doi.org/10.1051/e3sconf/202447202003Search in Google Scholar

Tiwari, A.K., Kanchan, R. (2024). Analytical study on the relationship among land surface temperature, land use/land cover and spectral indices using geospatial techniques. Discov Environ 2, 1 (2024). https://doi.org/10.1007/s44274-023-00021-1Search in Google Scholar

Ullah, W., Ahmad, K., Ullah, S., Tahir, A.A., Javed, M.F., Nazir, A., Abbasi, A.M., Aziz, M., Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon 9:e13322. https://doi.org/10.1016/j.heliyon.2023.e13322Search in Google Scholar

Weng, Q.H., Lu, D.S., Schubring, J. (2004). Estimation of Land Surface Temperature– Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens Environ 89: 467-483. https://doi:10.1016/j.rse.2003.11.005Search in Google Scholar

Zhang, Y., Odeh, I.O.A., Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4): 256-264. https://doi.org/10.1016/j.jag.2009.03.001Search in Google Scholar

Zhao, Q., Haseeb, M., Wang, X., Zheng, X., Tahir, Z., Ghafoor, S., Mubbin, M., Kumar, R.P., Purohit, S., Soufan, W., Almutairi, K.F. (2024). Evaluation of Land Use Land Cover Changes in Response to Land Surface Temperature With Satellite Indices and Remote Sensing Data. Rangeland Ecol Manag 96: 183-196. https://doi.org/10.1016/j.rama.2024.07.003Search in Google Scholar

Zha, Y., Gao, J., Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3): 583-594. https://doi.org/10.1080/01431160304987Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Geosciences, other, Life Sciences, Ecology