Cite

1. Oikonomou EK, Williams MC, Kotanidis CP, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;pii:ehz592.10.1093/eurheartj/ehz592 Search in Google Scholar

2. Timmis A, Townsend N, Gale C, et al. ESC Scientific Document Group. European Society of Cardiology: cardiovascular disease statistics 2017. Eur Heart J. 2018;39:508-579.10.1093/eurheartj/ehx628 Search in Google Scholar

3. Mathers CD, Loncar D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006;3:e442.10.1371/journal.pmed.0030442 Search in Google Scholar

4. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389197-210.10.1016/S0140-6736(16)30677-8 Search in Google Scholar

5. Stefanadis C, Antoniou C, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6 e005543.10.1161/JAHA.117.005543552404428314799 Search in Google Scholar

6. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 2016;13:210-220.10.1038/nrcardio.2015.20326822720 Search in Google Scholar

7. Nakanishi K, Fukuda S, Tanaka A, et al. Epicardial Adipose Tissue Accumulation Is Associated with Renal Dysfunction and Coronary Plaque Morphology on Multidetector Computed Tomography. Circ J. 2015;80:196-201.10.1253/circj.CJ-15-047726497330 Search in Google Scholar

8. Benedek T, Rat N, Hodas H, et al. The Assessment of Epicardial Adipose Tissue in Acute Coronary Syndrome Patients. A Systematic Review. Journal of Cardiovascular Emergencies. 2017;3:18-29.10.1515/jce-2017-0003 Search in Google Scholar

9. Nerlekar N, Brown AJ, Muthalaly RG, et al. Association of Epicardial Adipose Tissue and High-Risk Plaque Characteristics: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2017;6: e006379.10.1161/JAHA.117.006379558646528838916 Search in Google Scholar

10. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther. 2014;4:416-429. Search in Google Scholar

11. Nov O, Shapiro H, Ovadia H, et al. Interleukin-1beta regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability. PLoS One. 2013;8:e53626.10.1371/journal.pone.0053626354703023341960 Search in Google Scholar

12. Bo X, Ma L, Fan J, et al. Epicardial fat volume is correlated with coronary lesion and its severity. Int J Clin Exp Med. 2015;8:4328-4334. Search in Google Scholar

13. Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460-2466.10.1161/01.CIR.0000099542.57313.C514581396 Search in Google Scholar

14. Motoyama S, Ito H, Sarai M, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol. 2015;66:337-346.10.1016/j.jacc.2015.05.06926205589 Search in Google Scholar

15. Nakanishi K, Fukuda S, Tanaka A, et al. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease. Atherosclerosis. 2014;237:353-360.10.1016/j.atherosclerosis.2014.09.01525310459 Search in Google Scholar

16. Tachibana M, Miyoshi T, Osawa K, et al. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart Vessels. 2016;31:1758-1766.10.1007/s00380-016-0802-526833041 Search in Google Scholar

17. Larsen BA, Laughlin GA, Saad SD, et al. Pericardial fat is associated with all-cause mortality but not incident CVD: the Rancho Bernardo Study. Atherosclerosis. 2015;239:470-475.10.1016/j.atherosclerosis.2015.02.022436451625702617 Search in Google Scholar

18. Rabkin SW, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16:406-415.10.1111/obr.1227025753297 Search in Google Scholar

19. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557-560.10.1136/bmj.327.7414.55719285912958120 Search in Google Scholar

20. Hirata Y, Yamada H, Kusunose K, et al. Clinical utility of measuring epicardial adipose tissue thickness with echocardiography using a high-frequency linear probe in patients with coronary artery disease. J Am Soc Echocardiogr. 2015;28:1240-1246.e1.10.1016/j.echo.2015.07.00626275751 Search in Google Scholar

21. Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104:1654-1662.10.1136/heartjnl-2017-31232429853488 Search in Google Scholar

22. Franssens BT, Nathoe HM, Leiner T, et al. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur J Prev Cardiol. 2017;24:660-670.10.1177/204748731667952427872327 Search in Google Scholar

23. Abazid RM, Smettei OA, Kattea MO, et al. Relation between epicardial fat and subclinical atherosclerosis in asymptomatic individuals. J Thorac Imaging. 2017;32:378-382.10.1097/RTI.0000000000000296 Search in Google Scholar

24. Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705-713.10.1016/S0140-6736(13)61754-7 Search in Google Scholar

25. Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9: eaal2658.10.1126/scitranslmed.aal265828701474 Search in Google Scholar

26. Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104:1654-1662.10.1136/heartjnl-2017-31232429853488 Search in Google Scholar

27. Parajkó Z, Mester A, Kovács I, et al. Noninvasive Functional Characterization of Coronary Plaques by Coronary Computed Tomography – Beyond the Morphology of Vulnerable Plaques. Journal of Interdisciplinary Medicine. 2019;4:132-135.10.2478/jim-2019-0022 Search in Google Scholar

28. Mitra N, Cernica D, Hodas R, et al. Noninvasive Imaging Biomarkers of Vulnerable Coronary Plaques – a Clinical Update. Journal of Interdisciplinary Medicine. 2019;4:136-140.10.2478/jim-2019-0021 Search in Google Scholar

29. Szabó E, Parajkó Z, Opincariu D, et al. A Genomic Approach to Characterize the Vulnerable Patient – a Clinical Update. Journal of Interdisciplinary Medicine. 2019;4:141-144.10.2478/jim-2019-0023 Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine