This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. “Surface studies by scanning tunneling microscopy”. Phys. Rev. Lett. 49, 57–61, 1982.Search in Google Scholar
G. Binning, and H. Rohrer, “Scanning tunneling microscopy”. Surf. Sci. 126, 236–244, 1983.Search in Google Scholar
G. Binnig, and H. Rohrer. “Scanning Tunneling Microscopy–From Birth to Adolescence”. Rev. Mod. Phys. 59, 615−625, 1987.Search in Google Scholar
C. Gerber, G. Binnig, H. Fuchs, O. Marti, and H. Rohrer. “Scanning tunneling microscope combined with a scanning electron-microscope”. Rev. Sci. Instrum. 57, 221–224, 1986.Search in Google Scholar
H.-J. Güntherodt R. Wiesendanger, “Scanning tunneling microscopy I”. First edition, Springer series in Surface Science, Springer-Verlag, Berlin, Germany, 1992.Search in Google Scholar
H.-J. Güntherodt R. Wiesendanger, “Scanning tunneling microscopy II”. First edition, Springer series in Surface Science, Springer-Verlag, Berlin, Germany, 1992.Search in Google Scholar
K. Besocke. “An easily operable scanning tunneling microscope”. Surf. Sci. 181, 145–153, 1987.Search in Google Scholar
M. Salmeron, and B. Eren, “High-Pressure Scanning Tunneling Microscopy”. Chem. Rev. 121(2), 962-1006, 2021.Search in Google Scholar
B. J. McIntyre, M. Salmeron, and G. A. Somorjai, “A Variable Pressure/Temperature Scanning Tunneling Microscope for SurfaceScience and Catalysis Studies”. Rev. Sci. Instrum. 64, 687−691, 1993.Search in Google Scholar
T. Tiedje, J. Varon, H. Deckman, and J. Stokes. “Tip contamination effects in ambient pressure scanning tunneling microscopy imaging of graphite”. J. Vac. Sci. Technol. A 6(2), 372-375, 1987.Search in Google Scholar
K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, and Y. Jiang. “Scanning probe microscopy”. Nat. Rev. Methods Primers 1, 36, 2021.Search in Google Scholar
Y. Martin, C. C. Williams, and H. K. Wickramasinghe. “Atomic force microscope force mapping and profiling on a sub 100-Å scale”. J. Appl. Phys. 61, 4723–4729, 1987.Search in Google Scholar
Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, and D. J. Müller. “Imaging modes of atomic force microscopy for application in molecular and cell biology”. Nat. Nanotechnol. 12, 295–307, 2017.Search in Google Scholar
D. J. Müller, A. C. Dumitru, C. Lo Giudice, H. E. Gaub, P. Hinterdorfer, G. Hummer, J. J. De Yoreo, Y. F. Dufrêne, and D. Alsteens. “Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems”. Chem. Rev. 121(19), 11701–11725, 2021.Search in Google Scholar
R. Garcıá, and Rubén Pérez. "Dynamic atomic force microscopy methods". Surf. Sci. Rep. 47(6-8), 197-301, 2002.Search in Google Scholar
F. J. Giessibl. “Advances in atomic force microscopy”. Rev. Mod. Phys. 75, 949, 2003.Search in Google Scholar
L. W. Francis, P. D. Lewis, C. J. Wright, and R. S. Conlan. “Atomic force microscopy comes of age”. Biology of the Cell 102, 133-143, 2010.Search in Google Scholar
R. G. Forbes. “Development of a simple quantitative test for lack of field emission orthodoxy” Proc. R. Soc. Lond. A 469, 2013.Search in Google Scholar
R. G. Forbes. “The Murphy–Good plot: a better method of analysing field emission data”. R. Soc. Open Sci. 6, 2019.Search in Google Scholar
R. G. Forbes, E. O. Popov, A. G. Kolosko, and S. V. Filippov. “The pre-exponential voltage-exponent as a sensitive test parameter for field emission theories”. Roy. Soc. Open Sci. 8, 2021.Search in Google Scholar
M. M. Allaham, R. G. Forbes, A. Knápek, D. Sobola, D. Burda, P. Sedlák, M. S. Mousa, Interpretation of field emission current–voltage data: Background theory and detailed simulation testing of a user-friendly webtool, Mat. Tod. Comm., 31, 2022.Search in Google Scholar
M. M. Allaham, R. G. Forbes, A. Knapek, and M. S. Mousa. “Implementation of the orthodoxy test as a validity check on experimental field emission data”. J. Electr. Eng. 71 (1), 37–42, 2020.Search in Google Scholar
M. M. Allaham, A. Knápek, M. S. Mousa and R. G. Forbes. “User-friendly method for testing field electron emission data: Technical report”. 2021 34th International Vacuum Nano-electronics Conference (IVNC), Lyon, France 2021, 1-2.Search in Google Scholar
[24] Z. Košelová, L. Horáková, D. Burda, M. M. Allaham, A. Knápek, Z. Fohlerová. “Cleaning of tungsten tips for subsequent use as cold field emitters or STM probes”, J. Elect. Eng. 75 (1), 41–46, 2024.Search in Google Scholar
A. Knápek, M. M. Allaham, D. Burda, D. Sobola, M. Drozd, M. Horáček. “Explanation of the quasi-harmonic field emission behaviour observed on epoxy-coated polymer graphite cathodes”. Mat. Tod. Comm 34, 2023.Search in Google Scholar
E. O. Popov, S. V. Filippov, A. G. Kolosko, and A. Knápek. “Comparison of the effective parameters of single-tip tungsten emitter using Fowler–Nordheim and Murphy–Good plots”. J. Vac. Sci. Technol. B 40 (2), 2022.Search in Google Scholar
“Electrical conductivity of silicon.” http://lampz.tugraz.at/~hadley/psd/L4/conductivity.php (accessed Jun. 06, 2024).Search in Google Scholar
N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature,” IEEE Trans. Electron Devices, vol. 29, no. 2, pp. 292–295, 1982.Search in Google Scholar
G. N. Fursey, “Field emission in vacuum micro-electronics,” Appl. Surf. Sci., vol. 215, no. 1–4, pp. 113–134, Jun. 2003.Search in Google Scholar