Open Access

Mutually coupled CG-CS current reuse low noise amplifier architecture for 4 – 14 GHz frequency


Cite

W. J. Lee, J. J. Liou, and W. R. Chen, “24 GHz low-noise amplifier using 0.1 μm InP HEMTs,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 3, pp. 1059-1065, 2005. Search in Google Scholar

C. K. Lim, K. B. Kim, and K. J. Kim, “A 60 GHz low-noise amplifier using InP HEMT technology,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 9, pp. 597-599, 2005. Search in Google Scholar

X. Guan, H. Wang, Y. Liu, and X. Guo, “A 60 GHz cascode LNA with improved linearity and gain performance,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 727-729, 2016. Search in Google Scholar

C. Xu, J. Lin, H. Wang, Y. Liu, and X. Guo, “A 60 GHz CMOS LNA with inductor-peaking technique,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 838-840, 2016. Search in Google Scholar

Y. Jeon, K. Kim, and H. Yoon, “A 24 GHz low-noise amplifier in 0.18-μm CMOS with modified T-match network,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 10, pp. 560-562, 2006. Search in Google Scholar

W. Lee, J. Lee, J. Lee, and B. Kim, “A 60-GHz low-noise amplifier in 90-nm RF CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 12, pp. 2891-2897, 2007. Search in Google Scholar

W. Lee, J. Lee, J. Lee, and B. Kim, “A 77 GHz SiGe low-noise amplifier with input matching,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 10, pp. 705-707, 2007. Search in Google Scholar

B.-Z. Lu et al., “A Submilliwatt K-Band Low-Noise Amplifier for Next Generation Radio Astronomical Receivers in 65-nm CMOS Process,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 7, pp. 669-672, 2020. Search in Google Scholar

M.-Y. Huang, R.-Y. Huang, and R.-M. Weng, “A 0.3 V low cost low power 24 GHz low noise amplifier with body bias technology,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Jul. 2017, pp. 519-522. Search in Google Scholar

C. Li, O. El-Aassar, A. Kumar, M. Boenke, and G. M. Rebeiz, “LNA design with CMOS SOI process-l.4dB NF K/Ka band LNA,” IEEE MTT-S International Microwave Symposium Digest (IMS), pp. 1484-1486, 2018. Search in Google Scholar

M. Keshavarz Hedayati, A. Abdipour, R. Sarraf Shirazi, C. Cetintepe, and R. B. Staszewski, “A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1460-1464, 2018. Search in Google Scholar

S. Kong, H.-D. Lee, S. Jang, J. Park, K.-S. Kim, and K.-C. Lee, “A 28-GHz CMOS LNA with stability-enhanced Gm-boosting technique using transformers,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 7-10, 2019. Search in Google Scholar

A. A. Kumar, B. D. Sahoo, and A. Dutta, “A wideband 2-5 GHz noise canceling subthreshold low noise amplifier,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 834-838, 2017. Search in Google Scholar

B. Cui, J. R. Long, and D. L. Harame, “A 1.7-dB minimum NF, 22-32 GHz low-noise feedback amplifier with multistage noise matching in 22-nm SOI-CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019, pp. 211-214, 2019. Search in Google Scholar

L. Gao and G. M. Rebeiz, “A 24-43 GHz LNA with 3.1-3.7 dB noise figure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 239-242, 2019. Search in Google Scholar

P.B. Huynh, J.H. Kim, and T.Y. Yun, “Dual-Resistive Feedback Wideband LNA for Noise Cancellation and Robust Linearization”, IEEE Transaction on Microwave Theory Techniques, vol. 70, no. 4, pp. 2224-2235, 2022. Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other