1. bookVolume 72 (2021): Issue 4 (August 2021)
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
Open Access

Supercapacitors and energy conversion structures based on WS2 and MoS2 disulfides

Published Online: 13 Sep 2021
Volume & Issue: Volume 72 (2021) - Issue 4 (August 2021)
Page range: 256 - 261
Received: 12 Jul 2021
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

[1] E. L. González, F. I. Llerena, M. S. Pérez, F. R. Iglesias, and J. G. Macho, “Energy evaluation of a solar hydrogen storage facility, Comparison with other electrical energy storage technologies”, International Journal of Hydrogen Energy, vol. 40, no. 15, 2015, pp. 5518-5525.10.1016/j.ijhydene.2015.01.181 Search in Google Scholar

[2] A. Gonzlez, E. Goikolea, J. A. Barrena, and R. Mysyk, “Review on supercapacitors, Technologies and materials”, Renewable and Sustainable Energy Reviews, vol. 58, 2016, pp. 1189-1206.10.1016/j.rser.2015.12.249 Search in Google Scholar

[3] P. Naskar, A. Maiti, P. Chakraborty, D. Kundu, B. Biswas, and A. Banerjee, “Chemical supercapacitors, a review focusing on metallic compounds and conducting polymers”, Journal of Materials Chemistry A, vol. 9, no. 4, 2021, pp. 1970-2017.10.1039/D0TA09655E Search in Google Scholar

[4] J. Chen, N. Kuriyama, H. Yuan, H. T. Takeshita, and T. Sakai, “Electrochemical hydrogen storage in MoS2 nanotubes”, Journal of the American Chemical Society, vol. 123, no. 47, 2001, pp. 11813-11814.10.1021/ja017121z Search in Google Scholar

[5] S. Ding, J. S. Chen, and X. W. Lou, “Glucoseassisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties”, ChemistryA European Journal, vol. 17, no. 47, 2011, pp. 13142-13145.10.1002/chem.201102480 Search in Google Scholar

[6] M. Sun, J. Adjaye, and A. E. Nelson, “Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts”, Applied Catalysis A: General, vol. 263, no. 2, 2004, pp. 131-143.10.1016/j.apcata.2003.12.011 Search in Google Scholar

[7] M. M. Baig, E. Pervaiz, M. Yang, and I. H. Gul, “High-performance supercapacitor electrode obtained by directly bonding 2 D materials, hierarchal MoS2 on reduced graphene oxide”, Frontier in Materials, vol. 7, no. 323, 2020.10.3389/fmats.2020.580424 Search in Google Scholar

[8] S. Ji, Y. Ma, H. Wang, J. Key, D. J. Brett, and R. Wang, “Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material”, Electrochimica Acta, vol. 219, 2016, pp. 540-546.10.1016/j.electacta.2016.10.058 Search in Google Scholar

[9] Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2 D materials for flexible supercapacitors”, Journal of energy chemistry, vol. 27, no. 1, 2018, pp. 57-72.10.1016/j.jechem.2017.10.033 Search in Google Scholar

[10] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A practical beginners guide to cyclic voltammetry”, Journal of chemical education, vol. 95, no. 2, 2018, pp. 197-206.10.1021/acs.jchemed.7b00361 Search in Google Scholar

[11] T. Y. Chen, Y. H. Chang, C. L. Hsu, K. H. Wei, C. Y. Chiang, and L. J. Li, “Comparative study on MoS2 and WS2 for electrocatalytic water splitting”, International journal of hydrogen energy, vol. 38, no. 28, 2013, pp. 12302-12309.10.1016/j.ijhydene.2013.07.021 Search in Google Scholar

[12] D. Liu, X. Chen, D. Li, F. Wang, X. Luo, and B. Yang, “Simulation of MoS2 crystal structure and the experimental study of thermal decomposition”, Journal of Molecular Structure, vol. 980, no. 1-3, 2010, pp. 66-71.10.1016/j.molstruc.2010.06.038 Search in Google Scholar

[13] K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, and L. J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates”, Nano letters, vol. 12, no. 3, 2012, pp. 1538-1544.10.1021/nl2043612 Search in Google Scholar

[14] K. Krishnamoorthy, M. Premanathan, M. Veerapandian, and S. J. Kim, “Nanostructured molybdenum oxide-based antibacterial paint, effective growth inhibition of various pathogenic bacteria”, Nanotechnology, vol. 25, no. 31, 2014, pp. 315101.10.1088/0957-4484/25/31/315101 Search in Google Scholar

[15] N. R. Chodankar, D. P. Dubal, G. S. Gund, and C. D. Lokhande, “Flexible all-solid-stateMnO2 thin films based symmetric super- capacitors”, Electrochimica Acta, vol. 165, 2015, pp. 338-347.10.1016/j.electacta.2015.02.246 Search in Google Scholar

[16] J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, “Effect of pore size and surface area of carbide derived carbons on specific capacitance”, Journal of Power Sources, vol. 158, no. 1, 2006, pp. 765-772.10.1016/j.jpowsour.2005.09.008 Search in Google Scholar

[17] X. Y. Luo, Y. Chen, and Y. Mo, “A review of charge storage in porous carbon-based supercapacitors”, New Carbon Materials, vol. 36, no. 1, 2021, pp. 49-68.10.1016/S1872-5805(21)60004-5 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo