Open Access

Multimodal detection framework for financial fraud integrating LLMs and interpretable machine learning

, ,  and   
Sep 01, 2025

Cite
Download Cover

Ali, A. A., Khedr, A. M., El-Bannany, M., et al. (2023). A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost. Ensemble Learning Technique. Applied Sciences, 13(4), 2272. Ali A. A. Khedr A. M. El-Bannany M. ( 2023 ). A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost . Ensemble Learning Technique. Applied Sciences , 13 ( 4 ), 2272 . Search in Google Scholar

Ashtiaini, M. N., & Raahemi, B. (2021). Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access, 10, 72504-72525. Ashtiaini M. N. Raahemi B. ( 2021 ). Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review . IEEE Access , 10 , 72504 - 72525 . Search in Google Scholar

Bhattacharya, I., & Mickovic, A. (2024). Accounting Fraud Detection Using Contextual Language Learning. International Journal of Accounting Information Systems, 53, 100682. Bhattacharya I. Mickovic A. ( 2024 ). Accounting Fraud Detection Using Contextual Language Learning . International Journal of Accounting Information Systems , 53 , 100682 . Search in Google Scholar

Brown, N. C., Crowley, R. M., & Elliott, W. B. (2020). What Are You Saying? Using Topic to Detect Financial Misreporting. Journal of Accounting Research, 58, 237–291. Brown N. C. Crowley R. M. Elliott W. B. ( 2020 ). What Are You Saying? Using Topic to Detect Financial Misreporting . Journal of Accounting Research , 58 , 237 291 . Search in Google Scholar

Chen G. J. Lin H.,Wang L. (2005). Corporate Governance, Reputation Mechanism and the Behavior of Listed Firms in Committing in Fraud. Nankai Business Review. (06), 35-40. Chen G. J. Lin H. Wang L. ( 2005 ). Corporate Governance, Reputation Mechanism and the Behavior of Listed Firms in Committing in Fraud . Nankai Business Review . ( 06 ), 35 - 40 . Search in Google Scholar

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM. Chen T. Guestrin C. ( 2016 ). XGBoost: A scalable tree boosting system . In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785 - 794 ). ACM. Search in Google Scholar

Craja, P., Kim, A., & Lessmann, S. (2020). Deep Learning for Detecting Financial Statement Fraud. Decision Support Systems, 139, 113421. Craja P. Kim A. Lessmann S. ( 2020 ). Deep Learning for Detecting Financial Statement Fraud . Decision Support Systems , 139 , 113421 . Search in Google Scholar

Fukas, P., Rebstadt, J., Menzel, L., & others. (2022). Towards Explainable Artificial Intelligence in Financial Fraud Detection: Using Shapley Additive Explanations to Explore Feature Importance. In International Conference on Advanced Information Systems Engineering (pp. 109-126). Cham: Springer International Publishing. Fukas P. Rebstadt J. Menzel L. others., ( 2022 ). Towards Explainable Artificial Intelligence in Financial Fraud Detection: Using Shapley Additive Explanations to Explore Feature Importance . In International Conference on Advanced Information Systems Engineering (pp. 109 - 126 ). Cham : Springer International Publishing . Search in Google Scholar

Hajek, P., & Henriques, R. (2017). Mining Corporate Annual Reports for Intelligent Detection of Financial Statement Fraud – A Comparative Study of Machine Learning Methods. Knowledge-Based Systems, 128, 139-152. Hajek P. Henriques R. ( 2017 ). Mining Corporate Annual Reports for Intelligent Detection of Financial Statement Fraud – A Comparative Study of Machine Learning Methods . Knowledge-Based Systems , 128 , 139 - 152 . Search in Google Scholar

Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data Mining Techniques for the Detection of Fraudulent Financial Statements. Expert Systems with Applications, 32(4), 995-1003. Kirkos E. Spathis C. Manolopoulos Y. ( 2007 ). Data Mining Techniques for the Detection of Fraudulent Financial Statements . Expert Systems with Applications , 32 ( 4 ), 995 - 1003 . Search in Google Scholar

Li, A., Wang, D., Xu, W., Li, Z., & Yao, S. (2023). Financial Fraud Detection for Growth Enterprise Market Listed Companies based on Data Fusion. Data Analysis and Knowledge Discovery, 7 (05), 33–47. Li A. Wang D. Xu W. Li Z. Yao S. ( 2023 ). Financial Fraud Detection for Growth Enterprise Market Listed Companies based on Data Fusion . Data Analysis and Knowledge Discovery , 7 ( 05 ), 33 47 . Search in Google Scholar

Liu, Y. Q., Wu, B. & Zhang, M. (2022). Financial Fraud Recognition Model and Application. Journal of Quantitative & Technological Economics, 39(07): 152-175. http://doi:10.13653/j.cnki.jqte.2022.07.008 Liu Y. Q. Wu B. Zhang M. ( 2022 ). Financial Fraud Recognition Model and Application . Journal of Quantitative & Technological Economics , 39 ( 07 ): 152 - 175 . http://doi:10.13653/j.cnki.jqte.2022.07.008 Search in Google Scholar

Liu, W., Wang, Z., & Zhang, X. (2025). Research On Financial Fraud Detection By Integrating Latent Semantic Features Of Annual Report Text With Accounting Indicators. Journal of Accounting & Organizational Change, 2025. https://doi.org/10.1108/JAOC-06-2024-0199 Liu W. Wang Z. Zhang X. ( 2025 ). Research On Financial Fraud Detection By Integrating Latent Semantic Features Of Annual Report Text With Accounting Indicators . Journal of Accounting & Organizational Change , 2025 . https://doi.org/10.1108/JAOC-06-2024-0199 Search in Google Scholar

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56-67. https://doi.org/10.1038/s42256-019-0138-9 Lundberg S. M. Erion G. Chen H. DeGrave A. Prutkin J. M. Nair B. Katz R. Himmelfarb J. Bansal N. Lee S.-I. ( 2020 ). From local explanations to global understanding with explainable AI for trees . Nature Machine Intelligence , 2 ( 1 ), 56 - 67 . https://doi.org/10.1038/s42256-019-0138-9 Search in Google Scholar

Qian,P. & Luo. M. (2015). Predicting Accounting Fraud in China. Accounting Research, (07),18-25+96. Qian P. Luo M. ( 2015 ). Predicting Accounting Fraud in China . Accounting Research , ( 07 ), 18 - 25+96 . Search in Google Scholar

Shapley, L. S. (1953). A Value For n-Person Games. Contributions to the Theory of Games, 307-317. Shapley L. S. ( 1953 ). A Value For n-Person Games . Contributions to the Theory of Games , 307 - 317 . Search in Google Scholar

Sun, J., Fujita, H., Chen, P., & others. (2017). Dynamic Financial Distress Prediction with Concept Drift Based On Time Weighting Combined With Adaboost Support Vector Machine Ensemble. Knowledge-Based Systems, 120, 4-14. Sun J. Fujita H. Chen P. others., ( 2017 ). Dynamic Financial Distress Prediction with Concept Drift Based On Time Weighting Combined With Adaboost Support Vector Machine Ensemble . Knowledge-Based Systems , 120 , 4 - 14 . Search in Google Scholar

Tan,J. H. & Wang, X. Y. (2022). Corporate Fraud and Manipulation of Annual Report Text Information. China Soft Science, (03), 99-111. Tan J. H. Wang X. Y. ( 2022 ). Corporate Fraud and Manipulation of Annual Report Text Information . China Soft Science , ( 03 ), 99 - 111 . Search in Google Scholar

Wang, K. M., Wang, H. J., Li, D. D. & Dai, X. Y. (2018). Complexity of Annual Report and Management Selfinterest: Empirical Evidence from Chines Listed Firms. Journal of Management World, 34 (12), 120-132+194. doi:10.19744/j.cnki.11-1235/f.2018.0038. Wang K. M. Wang H. J. Li D. D. Dai X. Y. ( 2018 ). Complexity of Annual Report and Management Selfinterest: Empirical Evidence from Chines Listed Firms . Journal of Management World , 34 ( 12 ), 120 - 132+194 . 10.19744/j.cnki.11-1235/f.2018.0038 . Open DOISearch in Google Scholar

Wang, G., Maj, J. J. & Chen, G. (2022). Attentive Statement Fraud Detection: Distinguishing Multimodal Financial Data with Fine-Grained Attention. Decision Support Systems, 167, 113913. Wang G. Maj J. J. Chen G. ( 2022 ). Attentive Statement Fraud Detection: Distinguishing Multimodal Financial Data with Fine-Grained Attention . Decision Support Systems , 167 , 113913 . Search in Google Scholar

Wu, X., & Du, S. (2022). An Analysis on Financial Statement Fraud Detection For Chinese Listed Companies Using Deep Learning. IEEE Access, 10, 22516-22532. https://doi.org/10.1109/ACCESS.2022.3153478 Wu X. Du S. ( 2022 ). An Analysis on Financial Statement Fraud Detection For Chinese Listed Companies Using Deep Learning . IEEE Access , 10 , 22516 - 22532 . https://doi.org/10.1109/ACCESS.2022.3153478 Search in Google Scholar

Xiong, F. J. & Zhang, L. P. (2016). Risk Identification and Evidence Collection of Financial Fraud on the Listed Companies. Research on Economics and Managemení,37(10),138-144. http://doi:10.13502/j.cnki.issn1000- 7636.2016.10.016. Xiong F. J. Zhang L. P. ( 2016 ). Risk Identification and Evidence Collection of Financial Fraud on the Listed Companies . Research on Economics and Managemení , 37 ( 10 ), 138 - 144 . http://doi:10.13502/j.cnki.issn1000-7636.2016.10.016 . Search in Google Scholar

Yadav, A. K. S. (2017). Financial Statement Fraud Detection Using Optimized Deep Neural Network. In International Conference On Engineering, Applied Sciences And System Modeling (pp. 131-141). Singapore: Springer Nature Singapore. Yadav A. K. S. ( 2017 ). Financial Statement Fraud Detection Using Optimized Deep Neural Network . In International Conference On Engineering, Applied Sciences And System Modeling (pp. 131 - 141 ). Singapore : Springer Nature Singapore . Search in Google Scholar

Yu, E. P.-y., Luu, B. V., & Chen, C. H. (2020). Greenwashing in environmental, social and governance disclosures. Research in International Business and Finance, 52, 101192. Yu E. P.-y. Luu B. V. Chen C. H. ( 2020 ). Greenwashing in environmental, social and governance disclosures . Research in International Business and Finance , 52 , 101192 . Search in Google Scholar

Zeng, Q. S, Zhou, B.,Zhang,C. & Chen, X. Y.(2018). Annual Report Tone and Insider Trading: “Consistent” or “Deceptive”?. Journal of Management World, 34(09),143-160.doi:10.19744/j.cnki.11-1235/f.2018.09.012. Zeng Q. S Zhou B. Zhang C. Chen X. Y. ( 2018 ). Annual Report Tone and Insider Trading: “Consistent” or “Deceptive”? . Journal of Management World , 34 ( 09 ), 143 - 160 . 10.19744/j.cnki.11-1235/f.2018.09.012 . Open DOISearch in Google Scholar

Zhang, Y., Liu, T., & Li, W. (2024). Corporate Fraud Detection Based On Linguistic Readability Vector: Application To Financial Companies In China. International Review Of Financial Analysis, 95(Part B). https://doi. org/10.1016/j.irfa.2024.103405 Zhang Y. Liu T. Li W. ( 2024 ). Corporate Fraud Detection Based On Linguistic Readability Vector: Application To Financial Companies In China . International Review Of Financial Analysis , 95 (Part B). https://doi.org/10.1016/j.irfa.2024.103405 Search in Google Scholar

Zhao, Z., & Bai, T. (2022). Financial Fraud Detection and Prediction In Listed Companies Using SMOTE And Machine Learning Algorithms. Entropy, 24(8), 1157. Zhao Z. Bai T. ( 2022 ). Financial Fraud Detection and Prediction In Listed Companies Using SMOTE And Machine Learning Algorithms . Entropy , 24 ( 8 ), 1157 . Search in Google Scholar

Zhao, N.H., & Zhang, T.Y. (2022). Deep learning-based fraud detection in financial statements using MD&A text. Friends of Accounting, (08), 140–149. Zhao N.H. Zhang T.Y. ( 2022 ). Deep learning-based fraud detection in financial statements using MD&A text . Friends of Accounting , ( 08 ), 140 149 . Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Information Technology, Project Management, Databases and Data Mining