Open Access

Overview of Highly Flexible, Deployable Lattice Structures Used in Architecture and Civil Engineering Undergoing Large Displacements


Cite

[1] GANTES C.J., Deployable Structures: Analysis and Design, WIT Press, Southampton, Boston, 2001Search in Google Scholar

[2] PELLEGRINO S., Deployable Structures, Springer-Verlag Wien, New York, 200110.1007/978-3-7091-2584-7Search in Google Scholar

[3] WADA B.K., FANSON J.L., GARBA J.A., CHEN G.S., Adaptive structures to meet future requirements for large precision structures, Proceeding of the International Conference on Spacecraft Structure and Mechanical Testing, Noordwijk, Netherlands, 1988, 121-126.Search in Google Scholar

[4] VU K.K, TRAN T.C., LIEW J.Y.R., KRISHNAPILLAI A., Deployable Tension-Strut Structures: From Concept to Implementation, Journal of Constructional Steel Research Volume 62, (2006), 195-209.10.1016/j.jcsr.2005.07.007Search in Google Scholar

[5] FRIEDMAN N, IBRAHIMBEGOVIC A., FARKAS GY., Investigation of highly flexible, deployable structures : review, modelling, control, experiments and application; Phd Dissertation submitted to ENS de Cachan and to BME, tel-00675481, version 1, http://tel.archives-ouvertes.fr/tel-00675481,oai:tel.archives-ouvertes.fr:tel-00675481Search in Google Scholar

[6] IBRAHIMBEGOVIC A., On the geometrically exact Formulation of Structural Mechanics and Its Applications to Dynamics, Control and Optimization, Comptes Rendus de l’Academie des Sciences, Part II : Mecanique, Volume. 331 (2003), 383-394.Search in Google Scholar

[7] IBRAHIMBEGOVIC, A., SCHIEHLEN W., Computational Techniques and Applications in Nonlinear Dynamics of Structures and Multibody System, Proceedings EUROMECH-427, Cachan, September 24-27, 2001Search in Google Scholar

[8] IBRAHIMBEGOVIC A., TAYLOR R. L., Nonlinear Dynamics of Flexible Multibody Systems, Computers and Structures, Volume 81, (2003), 1113-1132.10.1016/S0045-7949(03)00032-4Search in Google Scholar

[9] GANT C., Conceptual Design of Structures: Proc. of the international symposium, University of Stuttgart,, Oct. 7-11 Stuttgart, IASS, IABSE (1996), 222-229.Search in Google Scholar

[10] IBRAHIMBEGOVIC A., MAMOURI S., TAYLOR R.L., CHEN A., Finite Element Method in Dynamics of Flexible Multibody Systems: Modeling of Holonomic Constraints and Energy-Conserving Integration Schemes, Multibody SystemDynamics, Volume 4,(1996), 195-223.Search in Google Scholar

[11] IBRAHIMBEGOVIC A., TAYLOR R.L., On the role of frame-invariance of structural mechanics models at finite rotations, Computer Methods in Applied Mechanics and Engineering, Volume 191, (2002), 5159-5176.10.1016/S0045-7825(02)00442-5Search in Google Scholar

[12] IBRAHIMBEGOVIC A., AL MIKDAD, Quadratically Convergent Direct Calculation of Critical Points for 3D Structures Undergoing Finite Rotations, Computer Methods in Applied Mechanics and Engineering, Volume 189, (2000), No 1. 107-120.Search in Google Scholar

[13] SNELSON, K., Forces made visible, Hudson Hills Press LLC, 2009Search in Google Scholar

[14] MOTRO R., Tensegrity: Structural Systems for the future, Butterworth-Heinemann; 2006Search in Google Scholar

[15] BURKHARDT R.W., A Practical Guide to Tensegrity Design, Cambridge, Massachusetts: Software Services, 1994Search in Google Scholar

[16] HUGH A., An Introduction to Tensegrity, Berkeley, California: University of California Press, 1976Search in Google Scholar

[17] MOTRO R., BOUDERBALA M., LESAUX C., CÉVAER F. Foldable tensegrities, Deployable Structures, Springer-Verlag Wien, New York, (2001), 199-238.10.1007/978-3-7091-2584-7_11Search in Google Scholar

[18] http://www.lt.ar.tum.de/forschung-am-lt/bewegliche-tragwerke/Search in Google Scholar

[19] RHODE-BARBARIGOS L.G.A., BEL HADJ ALI N., MOTRO R. AND SMITH I.F C.. Design Aspects of a Deployable Tensegrity-Hollow-rope Footbridge, in International Journal of Space Structures, Volume 27, (2012), No. 2, 81-96.Search in Google Scholar

[20] ATAKE K., Diagonal and Variable Frame Structures, Symmetry Culture and Science Extended Abstracts 1, ISIS Symmetry, Volume 1 (1995), 53-56.Search in Google Scholar

[21] PINERO E.P., Project for a mobile theatre, Architectural Design, Volume 12, (1961), 154-155.Search in Google Scholar

[22] ESCRIG F., BREBBIA C. Mobile and Rapidly Assembled Structures, II, First ed. Computational Mechanics, Southhampton, UK, (1996)Search in Google Scholar

[23] ESCRIG F., VALCARCEL J.P., SANCHEZ J.S., Las Cubiertas Desplogables de Malla Cuadrangular, Boletín Academico deUniversidad de Coruña, Escuela Téchnica Superior de Arquitectura,-No20, 1996Search in Google Scholar

[24] PELLEGRINO S., KWAN A. S. K., YOU Z., Active and passive cable elements in deployable masts, Int. J. Space Structures, Volume 8, (1993), No. 1-2, 29-40.Search in Google Scholar

[25] KAWAGUCHI M., ABE M., On some characteristics of pantadome system, IASS 2002: Lightweight Structures in CivilEngineering, proceedings of the international symposium, Warsaw, Poland, 24-28 June, Micro-Publisher Jan B. Obrebski, (2002), 50-57.Search in Google Scholar

[26] ONODA J., FU D.-Y., MINESUGI K., Two-Dimensional Deployable Hexapod Truss, Journal of Spacecraft and Rockets, Volume. 33, (1996), No.3, 416-421.Search in Google Scholar

[27] LIEW J.Y.R, LEE B.H., WANG B.B., Innovative use of star prism (SP) and dipyramid (DP) for spatial structures, Journalof Constructional Steel Research, Volume 59, (2003), Issue 3, 335 - 357.10.1016/S0143-974X(02)00037-8Search in Google Scholar

[28] KRISHNAPILLAI A., LIEW J.Y.R., VU, K. K., Deploy & Stabilize Spatial Structures, Extended Proc. of the IASS 2004 Symposium, Montpellier, France (2004)Search in Google Scholar

[29] TRAN T.C., LIEW R.J.Y., Butterfly structure for spatial enclosures, Journal of the International Association for Shelland Spatial Structures: IASS, Volume 47, (2006), No. 3Search in Google Scholar

[30] HOBERMAN C., Reversibly expandable doubly-curved truss structure, US Patent No 4,942,700, (1990)Search in Google Scholar

[31] HOBERMAN C., Radial expansion/retraction truss structures, US Patent No 5,024,031. (1991)Search in Google Scholar

[32] YOU Z., PELLEGRINO S. Foldable bar structures, Int J. Solids Struct, Volume 34 (1997), No 15, 1825-1847 .10.1016/S0020-7683(96)00125-4Search in Google Scholar

[33] WHITEHEAD I., Steel mesh and engineering wizardry unfold into a dome, Architectural Record, 2000.oct. (2000), 79-80.Search in Google Scholar

[34] KOVÁCS, F., Mozgathato Forgasszimmetrikus es Gombi Kupolaszerkezetek, Építés-Építészettudomány Volume 31, (2004), No 3-4, 205-222.10.1556/EpTud.31.2003.3-4.2Search in Google Scholar

[35] KOVÁCS F., Symmetry-adapted mobility and stress analysis of spherical and polyhedral generalized bar-and-joint structures, PhD dissertation submitted to the BME, Budapest, Hungary (2004)Search in Google Scholar

[36] KOKAWA T., Structural idea of retractable loop-dome, Journal of the International Association for Shell and SpatialStructures (IASS), Volume 41, (2000), No. 2, 111-116.Search in Google Scholar

[37] KASSABIAN P. E., Investigation into a type of deployable roof structure, Final year project, University of Cambridge, Engineering Department, 1997Search in Google Scholar

[38] KASSABIAN P.E., YOU Z., PELLEGRINO S., Retractable roof structures, Proceedings of Institution of Civil Engineers -Structures and Buildings, Volume 134 (1999), No1, 45-56.10.1680/istbu.1999.31252Search in Google Scholar

[39] TIBERT, G., Deployable Tensegrity Structures for Space Applications, Doctoral Thesis for the Royal Institute of Techn. Dpt. of Mechanics, (2002)10.2514/6.2003-1978Search in Google Scholar

[40] HERDER, A., Synchronised Activation of Single-curved Tensegrity Grids for Responsive Architecture, http://www.arnoudherder.nl/Figures/Tensegrity/Synchronised20Activation20of20Single-curved20Tensegrity20Grids20for20Responsive20Architecture.pdf (2008)Search in Google Scholar

[41] SOFLA A.Y.N, ELZEY D.M., WADLEY, H.N.G. Shape morphing hinged truss structures, Smart Materials and Structures 18 doi:10.1088/0964-1726/18/6/065012 (2009) 10.1088/0964-1726/18/6/065012Search in Google Scholar

[42] HEGEDŰS I.: Branching of Equilibrium Paths in a Deployable Column, International Journal of Space Structures, Special Issue, vol 8, 1993, 119-12510.1177/0266351193008001-212Search in Google Scholar

[43] CLARKE R.C., The kinematics of a novel deployable space structure system, Proceedings of the 3rd, H. Nooshin:International Conference on Space Structures, University of Surrey, Guildford, UK, London, (1984), 820-822.Search in Google Scholar

[44] ZEIGLER T.R., Collapsible self-supporting structure. Us Patent No.3,968,808, (1976)Search in Google Scholar

[45] ZEIGLER T. R., Collapsible self-supporting structures, Us Patent No.4,026,313 (1977)Search in Google Scholar

[46] KRISHNAPILLAI A., ZALEWSKI W. P., The design of deployable structures - Kinematic design, Unpublished Research Report, Departent of Architecture, MIT, Cambridge, Massachussets, USA, October (1985)Search in Google Scholar

[47] KRISHNAPILLAI A., CRAWLEY E., Deployable structures - Kinematic design, Unpublished Research Report, Departent of Aerospace Engineering, MIT, Cambridge, Massachussets, USA, October, 1986Search in Google Scholar

[48] MIKULAS M.M.JR., WADA B.K., FARHAT C., THORWALD G., WITHNELL P., Initially Deformed Truss Geometry for Improving the Adaptivity Performance of Truss Structures, Third International Conference on Adaptive Structures, Wada B.K., Natori M, Breitback E, Nov 9-11, San Diego, California, USA, (1992), 305-319.Search in Google Scholar

[49] FRIEDMAN N et al., On the snap-back behavior of a self-deploying antiprismatic column during packing. Eng Struct (2013), http://dx.doi.org/10.1016/j.engstruct.2012.12.03510.1016/j.engstruct.2012.12.035Search in Google Scholar

[50] WEBB J.E., MAUCH H.R., Deployable Latice Column, USA Patent No. 348 627 9 (1969)Search in Google Scholar

[51] LOVE A.E.H., A treatise on the mathematical theory of elasticity, Fourth Edition, Dover Publications, New York , (1944)Search in Google Scholar

[52] FANNING P.,HOLLOWAY L., The Deployment Analysis of a Large Space Antenna, International Journal of Space Structures, Volume 8, (1993), No. 3, 209-220.Search in Google Scholar

ISSN:
2063-997X
Language:
English