Open Access

Optimization of Extraction Parameters of Ethanol Extracts of Propolis Samples Using Artificial Neural Network and Moth-Flame Optimization Algorithm


Cite

Fig. 1

The layers of this study.
The layers of this study.

Fig. 2

Spiral flying path around close light sources (Mirjalili, 2015).
Spiral flying path around close light sources (Mirjalili, 2015).

Fig. 3

Euclidean distance approach of this study.
Euclidean distance approach of this study.

Fig. 4

Experimental and ANN results for TPC.
Experimental and ANN results for TPC.

Fig. 5

Experimental and ANN results for FRAP.
Experimental and ANN results for FRAP.

Fig. 6

Optimization course for TPC.
Optimization course for TPC.

Fig. 7

Optimization course for FRAP.
Optimization course for FRAP.

The optimum extraction parameters obtained from single objective optimization

AssayEthanol content (%)Extraction time (h)Estimated valueUnit
TPC57.5013.9691.19mg GAE/g
FRAP72.0318.04673.05μmol FeSO47H2O/g

MFO algorithm architecture

ParametersValue
Number of search agents20
Maximum number of iterations30
Run Number100

The optimum extraction parameters obtained from multi-objective optimization

ObjectiveEthanol content (%)Extraction time (h)TPC (mg GAE/g)FRAP (μmol FeSO47H2O/g)
Max. TPCMax. FRAP70.0316.9383.35667.26

TPC and FRAP activities of propolis ethanol extracts

Experiment numberEthanol content (%)Extraction time (h)TPC (mg GAE/g)FRAP (μmol FeSO4·7H2O/g)
140827.56±1.82a239.85±6.83a
2401032.69±0.87b239.76±3.82a
3401224.19±0.68a233.80±0.65a
4401624.85±0.90a227.25±2.33a
5402034.39±0.82b277.01±1.21b
6402447.20±0.24c311.79±2.83c
750861.64±0.82def353.72±0.00d
8501057.83±0.45d306.93±0.72c
9501264.51±2.50fgh359.25±3.75d
10501659.33±0.19de350.92±0.68d
11502066.42±0.72ghi346.92±3.30d
12502468.32±1.42hij430.37±38.90e
1360883.95±3.61no646.89±10.04no
14601062.53±3.87efg462.13±5.16f
15601285.35±0.90o578.34±1.92jk
16601670.07±1.60ij587.76±3.89kl
17602081.14±0.09no512.79±9.11gh
18602474.95±0.69kl568.41±2.03j
1970882.06±4.46no657.25±2.44o
20701064.04±4.32fgh527.87±17.85hi
21701259.28±1.28de501.61±3.76g
22701685.31±3.33o632.80±1.34mn
23702075.49±3.02kl587.75±7.73kl
24702476.44±1.73lm597.94±5.31l
2580880.01±2.09mn617.95±0.00m
26801064.34±0.18fgh618.87±13.44m
27801271.56±0.47jk495.96±11.87g
28801664.45±3.01fgh591.99±11.57kl
29802064.28±6.16fgh543.13±9.23i
30802485.25±2.24o623.19±14.57m

Comparison of some propolis extraction optimization research with the study

Previous studyInput variablesOutput variablesOptimization method
Yingjuan et al. (2007)Ethanol concentrationExtracting timeExtracting powerRatio of liquid to propolisFlavonesResponse Surface Methodology (RSM)
Wang et al. (2009)Ethanol concentrationRatio of liquidThe holding time of pressurePressure to propolisFlavonesRSM
Kim et al. (2009)Ethanol concentrationExtraction timeTotal polyphenol content (TPC)Total flavonoid content (TFC)RSM
Li et al. (2012)Microwave treatment timeMicrowave powerEthanol concentrationTemperatureTimeSolvent-to-solidTotal flavonoid yieldRSM
Yuan et al. (2013)Ratio of lipid to drugRatio of soybean phospholipid to cholesterolSpeed of injectionPropolis flavonoids liposome (PFL)RSM
Zhao et al. (2012)Extraction timeEthanol concentrationSolid-liquid ratioDistilling frequencyDistilling temperatureExtraction ratio TFCRSM
Oldoni et al. (2015)Ethanol ratioTemperature TimeTPCDPPH23 factorial design
Nichitoi et al. (2019)Particle sizeSolvent type (ethanolic aqueous)Extraction durationTPCTFCAntioxidant capacityPartial Least Squares Regression
Our studyEthanol contentExtraction timeTPC (Single objective)FRAP activities (Single objective)TPC and FRAP (Multi-objective)ANN and MFO

Performance of the best models

Studied assayPerformance of modelTrainingValidationTestAll
TPCMAPE4.514.488.195.12
MSE17.026.4651.6721.74
R20.970.990.960.96
FRAP activityMAPE1.410.699.232.45
MSE81.9112.733929.23624.12
R20.990.990.960.98
eISSN:
2299-4831
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Zoology, other