Cite

Alberoni, D., Gaggìa, F., Baffoni, L., & Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied Microbiology and Biotechnology, 100, 9469–9482. https://doi.org/10.1007/s00253-016-7870-4AlberoniD.GaggìaF.BaffoniL.Di GioiaD.2016Beneficial microorganisms for honey bees: problems and progressesApplied Microbiology and Biotechnology10094699482https://doi.org/10.1007/s00253-016-7870-410.1007/s00253-016-7870-4Search in Google Scholar

Ament, S. A., Chan, Q. W., Wheeler, M. M., Nixon, S. E., Johnson, S. P.,... Robinson, G. E. (2011). Mechanisms of stable lipid loss in a social insect. Journal of Experimental Biology, 214(22), 3808–3821. https://doi.org/10.1242/jeb.060244AmentS. A.ChanQ. W.WheelerM. M.NixonS. E.JohnsonS. P.RobinsonG. E.2011Mechanisms of stable lipid loss in a social insectJournal of Experimental Biology2142238083821https://doi.org/10.1242/jeb.06024410.1242/jeb.060244Search in Google Scholar

Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A., Omholt, S. W. (2004). Altered Physiology in Worker Honey Bees (Hymenoptera: Apidae) Infested with the Mite Varroa destructor (Acari: Varroidae): A Factor in Colony Loss During Overwintering? Journal of Economic Entomology, 97(3), 741–747. https://doi.org/10.1093/jee/97.3.741AmdamG. V.HartfelderK.NorbergK.HagenA.OmholtS. W.2004Altered Physiology in Worker Honey Bees (Hymenoptera: Apidae) Infested with the Mite Varroa destructor (Acari: Varroidae): A Factor in Colony Loss During Overwintering?Journal of Economic Entomology973741747https://doi.org/10.1093/jee/97.3.74110.1603/0022-0493(2004)097[0741:APIWHB]2.0.CO;2Search in Google Scholar

Antúnez, K., Anido, M., Branchiccela, B., Harriet, J., Campa, J., ... Zunino, P. (2015). Seasonal variation of honeybee pathogens and its association with pollen diversity in Uruguay. Microbial ecology, 70(2), 522–533. https://doi.org/10.1007/s00248-015-0594-7AntúnezK.AnidoM.BranchiccelaB.HarrietJ.CampaJ.ZuninoP.2015Seasonal variation of honeybee pathogens and its association with pollen diversity in UruguayMicrobial ecology702522533https://doi.org/10.1007/s00248-015-0594-710.1007/s00248-015-0594-7Search in Google Scholar

Arrese, E. L., & Soulages, J. L. (2010). Insect fat body: energy, metabolism, and regulation. Annual review of entomology, 55, 207–225. https://doi.org/10.1146/annurev-ento-112408-085356ArreseE. L.SoulagesJ. L.2010Insect fat body: energy, metabolism, and regulationAnnual review of entomology55207225https://doi.org/10.1146/annurev-ento-112408-08535610.1146/annurev-ento-112408-085356Search in Google Scholar

Audisio, M. A. (2016). Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of Argentina. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-016-9231-0.AudisioM. A.2016Gram-Positive Bacteria with Probiotic Potential for the Apis mellifera L. Honey Bee: The Experience in the Northwest of ArgentinaProbiotics and Antimicrobial Proteinshttps://doi.org/10.1007/s12602-016-9231-010.1007/s12602-016-9231-0Search in Google Scholar

Audisio, M. C., & Benítez-Ahrendts, M. R. (2011). Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Beneficial Microbes, 2(1), 29–34. https://doi.org/10.3920/BM2010.0024AudisioM. C.Benítez-AhrendtsM. R.2011Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee coloniesBeneficial Microbes212934https://doi.org/10.3920/BM2010.002410.3920/BM2010.0024Search in Google Scholar

Audisio, M. C., Terzolo, H. R., & Apella, M. C. (2005). Bacteriocin from honeybee beebread Enterococcus avium, active against Listeria monocytogenes. Applied and Environmental Microbiology, 71(6), 3373–3375. https://doi.org/10.1128/AEM.71.6.3373-3375.2005AudisioM. C.TerzoloH. R.ApellaM. C.2005Bacteriocin from honeybee beebread Enterococcus avium, active against Listeria monocytogenesApplied and Environmental Microbiology71633733375https://doi.org/10.1128/AEM.71.6.3373-3375.200510.1128/AEM.71.6.3373-3375.2005Search in Google Scholar

Audisio, M. C., Sabaté, D. C., & Benítez-Ahrendts, M. R. (2015). Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Beneficial Microbes, 25, 1–10. https://doi.org/10.3920/BM2014.0155AudisioM. C.SabatéD. C.Benítez-AhrendtsM. R.2015Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gutBeneficial Microbes25110https://doi.org/10.3920/BM2014.015510.3920/BM2014.0155Search in Google Scholar

Baffoni, L., Gaggìa, F., Alberoni, D., Cabbri, R., Nanetti, A., … Di Gioia, D. (2016). Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Beneficial microbes, 7(1), 45–51. https://doi.org/10.3920/BM2015.0085BaffoniL.GaggìaF.AlberoniD.CabbriR.NanettiA.Di GioiaD.2016Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranaeBeneficial microbes714551https://doi.org/10.3920/BM2015.008510.3920/BM2015.0085Search in Google Scholar

Bahreini, R., & Currie, R. W. (2015). The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae). Journal of Invertebrate Pathology, 132, 57–65. https://doi.org/10.1016/j.jip.2015.07.019BahreiniR.CurrieR. W.2015The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae)Journal of Invertebrate Pathology1325765https://doi.org/10.1016/j.jip.2015.07.01910.1016/j.jip.2015.07.019Search in Google Scholar

Bowen-Walker, P. L., & Gunn, A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomologia Experimentails et Applicata, 101(3), 207–217. https://doi.org/10.1046/j.1570-7458.2001.00905.xBowen-WalkerP. L.GunnA.2001The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levelsEntomologia Experimentails et Applicata1013207217https://doi.org/10.1046/j.1570-7458.2001.00905.x10.1046/j.1570-7458.2001.00905.xSearch in Google Scholar

Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, 72, 248–254.BradfordM.1976A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-bindingAnalytical Biochemistry7224825410.1016/0003-2697(76)90527-3Search in Google Scholar

Brodschneider, R. & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278–294. https://doi.org/10.1016/0003-2697(76)90527-3BrodschneiderR.CrailsheimK.2010Nutrition and health in honey beesApidologie413278294https://doi.org/10.1016/0003-2697(76)90527-310.1051/apido/2010012Search in Google Scholar

Caccia, S., Di Lelio, I., La Storia, A., Marinelli, A., Varricchio, P., ... Ferré, J. (2016). Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences, 113(34), 9486–9491. https://doi.org/10.1073/pnas.1521741113CacciaS.Di LelioI.La StoriaA.MarinelliA.VarricchioP.FerréJ.2016Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanismProceedings of the National Academy of Sciences1133494869491https://doi.org/10.1073/pnas.152174111310.1073/pnas.1521741113500328827506800Search in Google Scholar

Corona, M., Velarde, R. A., Remolina, S., Moran-Lauter, A., Wang, Y., … Robinson, G. E. (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proceedings of the National Academy of Sciences, 104(17), 7128–7133. https://doi.org/10.1073/pnas.0701909104CoronaM.VelardeR. A.RemolinaS.Moran-LauterA.WangY.RobinsonG. E.2007Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevityProceedings of the National Academy of Sciences1041771287133https://doi.org/10.1073/pnas.070190910410.1073/pnas.0701909104185233017438290Search in Google Scholar

Crotti, E., Balloi, A., Hamdi, C., Sansonno, L., Marzorati, M. (2012). Microbial symbionts: a resource for the management of insect-related problems. Microbial Biotechnology, 5, 307–317. https://doi.org/10.1111/j.1751-7915.2011.00312.xCrottiE.BalloiA.HamdiC.SansonnoL.MarzoratiM.2012Microbial symbionts: a resource for the management of insect-related problemsMicrobial Biotechnology5307317https://doi.org/10.1111/j.1751-7915.2011.00312.x10.1111/j.1751-7915.2011.00312.x382167522103294Search in Google Scholar

Crotti, E., Sansonno, L., Prosdocimi, E. M., Vacchini, V., Hamdi, C.,... Balloi, A. (2013). Microbial symbionts of honeybees: a promising tool to improve honeybee health. New biotechnology, 30(6), 716–722. https://doi.org/10.1016/j.nbt.2013.05.004CrottiE.SansonnoL.ProsdocimiE. M.VacchiniV.HamdiC.BalloiA.2013Microbial symbionts of honeybees: a promising tool to improve honeybee healthNew biotechnology306716722https://doi.org/10.1016/j.nbt.2013.05.00410.1016/j.nbt.2013.05.00423727340Search in Google Scholar

Damiani, N., Maggi, M. D., Gende, L. B., Faverin, C., Eguaras, M. J., Marcangeli, J. A. (2010). Evaluation of the toxicity of a propolis extract on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Journal of Apicultural Research, 49(3), 257–264. https://doi.org/10.3896/IBRA.1.49.3.05DamianiN.MaggiM. D.GendeL. B.FaverinC.EguarasM. J.MarcangeliJ. A.2010Evaluation of the toxicity of a propolis extract on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae)Journal of Apicultural Research493257264https://doi.org/10.3896/IBRA.1.49.3.0510.3896/IBRA.1.49.3.05Search in Google Scholar

De D’Aubeterre, J. P., Myrold, D.D., Royce, L. A., & Rossignol, P. A. (1999). A scientific note of an application of isotope ratio mass spectrometry to feeding by the mite, Varroa jacobsoni Oudemans, on the honeybee, Apis mellifera L. Apidologie 30, 351–352.De D’AubeterreJ. P.MyroldD.D.RoyceL. A.RossignolP. A.1999A scientific note of an application of isotope ratio mass spectrometry to feeding by the mite, Varroa jacobsoni Oudemans, on the honeybee, Apis mellifera LApidologie3035135210.1051/apido:19990413Search in Google Scholar

De Oliveira, V. T. P., & Da Cruz-Landim, C. (2003). Morphology and function of insect fat body cells: a review. Biociências, 11 (2), 195–205.De OliveiraV. T. P.Da Cruz-LandimC.2003Morphology and function of insect fat body cells: a reviewBiociências112195205Search in Google Scholar

Engel, P., Martinson, V. G., & Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences, 109(27), 11002–11007. https://doi.org/10.1073/pnas.1202970109EngelP.MartinsonV. G.MoranN. A.2012Functional diversity within the simple gut microbiota of the honey beeProceedings of the National Academy of Sciences109271100211007https://doi.org/10.1073/pnas.120297010910.1073/pnas.1202970109339088422711827Search in Google Scholar

European Commission, (2010). Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union, 15, 1–70. http://ec.europa.eu/health/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf.European Commission2010Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal originOfficial Journal of the European Union15170http://ec.europa.eu/health/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdfSearch in Google Scholar

Gregory, P. G., Evans, J. D., Rinderer, T., & De Guzman, L. (2005). Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science, 5, 7. https://doi.org/10.1093/jis/5.1.7GregoryP. G.EvansJ. D.RindererT.De GuzmanL.2005Conditional immune-gene suppression of honeybees parasitized by Varroa mitesJournal of Insect Science57https://doi.org/10.1093/jis/5.1.710.1093/jis/5.1.7128388816299597Search in Google Scholar

Hubert, J., Bicianova, M., Ledvinka, O., Kamler, M., Lester, P. J.,... Erban, T. (2017). Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microbial ecology, 73(3), 685–698. https://doi.org/10.1007/s00248-016-0869-7HubertJ.BicianovaM.LedvinkaO.KamlerM.LesterP. J.ErbanT.2017Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passimMicrobial ecology733685698https://doi.org/10.1007/s00248-016-0869-710.1007/s00248-016-0869-727730366Search in Google Scholar

Janashia, I. & Alaux, C. (2016). Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, https://doi.org/10.1093/jee/tow065JanashiaI.AlauxC.2016Specific Immune Stimulation by Endogenous Bacteria in Honey Bees (Hymenoptera: Apidae)Journal of Economic Entomologyhttps://doi.org/10.1093/jee/tow06510.1093/jee/tow06527063842Search in Google Scholar

Jefferson, J. M., Dolstad, H. A., Sivalingam, M. D., & Snow, J. W. (2013). Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS ONE, https://doi.org/10.1371/journal.pone.0054097JeffersonJ. M.DolstadH. A.SivalingamM. D.SnowJ. W.2013Barrier immune effectors are maintained during transition from nurse to forager in the honey beePLoS ONEhttps://doi.org/10.1371/journal.pone.005409710.1371/journal.pone.0054097354006323320121Search in Google Scholar

Kakumanu, M. L., Reeves, M. R., Anderson, T. D., Rodrigues, R. R., Williams, M. A. (2016). Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Frontiers in Microbiology, 7, 1255. https://doi.org/10.3389/fmicb.2016.01255KakumanuM. L.ReevesM. R.AndersonT. D.RodriguesR. R.WilliamsM. A.2016Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide ExposuresFrontiers in Microbiology71255https://doi.org/10.3389/fmicb.2016.0125510.3389/fmicb.2016.01255498555627579024Search in Google Scholar

Kesïnerova, Â. L., Mars, R. A. T., Ellegaard, K. M., Troilo, M., Sauer, U., Engel, P. (2017). Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol, 15(12): e2003467. https://doi.org/10.1371/journal.pbio.2003467.KesïnerovaÂ. L.MarsR. A. T.EllegaardK. M.TroiloM.SauerU.EngelP.2017Disentangling metabolic functions of bacteria in the honey bee gutPLoS Biol1512e2003467https://doi.org/10.1371/journal.pbio.200346710.1371/journal.pbio.2003467572662029232373Search in Google Scholar

Kwong, W. K., & Moran, N. A. (2016). Gut microbial communities of social bees. Nature Reviews Microbiology, 14, 374–384. https://doi.org/10.1038/nrmicro.2016.43KwongW. K.MoranN. A.2016Gut microbial communities of social beesNature Reviews Microbiology14374384https://doi.org/10.1038/nrmicro.2016.4310.1038/nrmicro.2016.43564834527140688Search in Google Scholar

Kwong, W. K., Mancenido, A. L., & Moran, N. A. (2017). Immune system stimulation by the native gut microbiota of honey bees. Royal Society open Science, 4, 170003. http://dx.doi.org/10.1098/rsos.170003.KwongW. K.MancenidoA. L.MoranN. A.2017Immune system stimulation by the native gut microbiota of honey beesRoyal Society open Science4170003http://dx.doi.org/10.1098/rsos.17000310.1098/rsos.170003536727328386455Search in Google Scholar

Lee, K. V., Steinhauer, N., Rennich, K., Wilson, M. E., Tarpy, D. R., ... Pettis, J. (2015). A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie, 46(3), 292–305. https://doi.org/10.1007/s13592-015-0356-zLeeK. V.SteinhauerN.RennichK.WilsonM. E.TarpyD. R.PettisJ.2015A national survey of managed honey bee 2013–2014 annual colony losses in the USAApidologie463292305https://doi.org/10.1007/s13592-015-0356-z10.1007/s13592-015-0356-zSearch in Google Scholar

Maggi, M., Negri, P., Plischuk, S., Szawarski, N., De Piano, F.,... Audisio, C. (2013). Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Veterinary Microbiology, 167(3–4), 474–483. https://doi.org/10.1016/j.vetmic.2013.07.030MaggiM.NegriP.PlischukS.SzawarskiN.De PianoF.AudisioC.2013Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiencyVeterinary Microbiology1673–4474483https://doi.org/10.1016/j.vetmic.2013.07.03010.1016/j.vetmic.2013.07.03023978352Search in Google Scholar

Maggi, M., Antúnez, K., Invernizzi, C., Aldea, P., Vargas, M., ... Barrios, C. (2016). Honeybee health in South America. Apidologie, 47(6), 835–854. https://doi.org/10.1007/s13592-016-0445-7MaggiM.AntúnezK.InvernizziC.AldeaP.VargasM.BarriosC.2016Honeybee health in South AmericaApidologie476835854https://doi.org/10.1007/s13592-016-0445-710.1007/s13592-016-0445-7Search in Google Scholar

Márquez Gutiérrez, M. E., Fernández-Larrea, Vega, O., Díaz Mena, D., Díaz, A., Carreras Solís, B. (2003). Evaluación de un producto de Bacillus thuringiensis para el control de la varroasis. Fitosanidad, 7, 1. http://www.redalyc.org/articulo.oa?id=209118077001Márquez GutiérrezM. E.Fernández-LarreaVegaO.Díaz MenaD.DíazA.Carreras SolísB.2003Evaluación de un producto de Bacillus thuringiensis para el control de la varroasisFitosanidad71http://www.redalyc.org/articulo.oa?id=209118077001Search in Google Scholar

Medici, S. K., Maggi, M. D., Sarlo, E. G., Ruffinengo, S., … Eguaras, M. J. (2015). The presence of synthetic acaricides in beeswax and its influence on the development of resistance in Varroa destructor. Journal of Apicultural Research, 54(3), 267–274. https://doi.org/10.1080/00218839.2016.1145407MediciS. K.MaggiM. D.SarloE. G.RuffinengoS.EguarasM. J.2015The presence of synthetic acaricides in beeswax and its influence on the development of resistance in Varroa destructorJournal of Apicultural Research543267274https://doi.org/10.1080/00218839.2016.114540710.1080/00218839.2016.1145407Search in Google Scholar

Moran, N. A. (2015). Genomics of the honey bee microbiome. Current Opinion Insect Science, 10, 22–28. https://doi.org/10.1016/j.cois.2015.04.003MoranN. A.2015Genomics of the honey bee microbiomeCurrent Opinion Insect Science102228https://doi.org/10.1016/j.cois.2015.04.00310.1016/j.cois.2015.04.003448487526140264Search in Google Scholar

Neumann, P., & Carreck, N. L. (2010). Honey bee colony losses. Journal of Apicultural Research, 49(1), 1–6. https://doi.org/10.3896/IBRA.1.49.1.01NeumannP.CarreckN. L.2010Honey bee colony lossesJournal of Apicultural Research49116https://doi.org/10.3896/IBRA.1.49.1.0110.3896/IBRA.1.49.1.01Search in Google Scholar

Newton, I. L., Sheehan, K. B., Lee, F.J., Horton, M. A., Hicks, R. D. (2013). Invertebrate systems for hypothesis-driven microbiome research. Microbiome Science and Medicine, 1(1). https://doi.org/10.2478/micsm-2013-0001.NewtonI. L.SheehanK. B.LeeF.J.HortonM. A.HicksR. D.2013Invertebrate systems for hypothesis-driven microbiome researchMicrobiome Science and Medicine11https://doi.org/10.2478/micsm-2013-000110.2478/micsm-2013-0001Search in Google Scholar

Nieto, A., Roberts, S. P., Kemp, J., Rasmont, P., Kuhlmann, M., ... De Meulemeester, T. (2014). European red list of bees. Luxembourg: Publication Office of the European Union, 98. Luxembourgo.NietoA.RobertsS. P.KempJ.RasmontP.KuhlmannM.De MeulemeesterT.2014European red list of beesLuxembourgPublication Office of the European Union98Luxembourgo.Search in Google Scholar

Nilsen, K. A., Ihle, K. E., Frederick, K., Fondrk, M. K., Smedal, B. (2010). Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. Journal of Experimental Biology, 214, 1488–1497. https://doi.org/10.1242/jeb.050393NilsenK. A.IhleK. E.FrederickK.FondrkM. K.SmedalB.2010Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiologyJournal of Experimental Biology21414881497https://doi.org/10.1242/jeb.05039310.1242/jeb.050393307607521490257Search in Google Scholar

Ptaszyńska, A. A., Borsuk, G., Zdybicka-Barabas, A., Cytryńska, M., Małek, W. (2016). Arecommercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitology Research, 115, 397–406. https://doi.org/10.1007/s00436-015-4761-zPtaszyńskaA. A.BorsukG.Zdybicka-BarabasA.CytryńskaM.MałekW.2016Arecommercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C?Parasitology Research115397406https://doi.org/10.1007/s00436-015-4761-z10.1007/s00436-015-4761-z470009326437644Search in Google Scholar

Porrini, M. P., Audisio, M. C., Sabaté, D. C., Ibarguren, C., Medici, S. K.,... Eguaras, M. J. (2010). Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology research, 107(2), 381–388. https://doi.org/10.1007/s00436-010-1875-1PorriniM. P.AudisioM. C.SabatéD. C.IbargurenC.MediciS. K.EguarasM. J.2010Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis melliferaParasitology research1072381388https://doi.org/10.1007/s00436-010-1875-110.1007/s00436-010-1875-120467753Search in Google Scholar

Ramsey, S., Gulbronson, C. J., Mowery, J., Ochoa, R., Bauchan, G. (2018). A multi-microscopy approach to discover the feeding site and host tissue consumed by Varroa destructor on host honey bees. Microscopy and Microanalysis, 24(S1), 1258–1259. DOI: 10.1017/S1431927618006773RamseyS.GulbronsonC. J.MoweryJ.OchoaR.BauchanG.2018A multi-microscopy approach to discover the feeding site and host tissue consumed by Varroa destructor on host honey beesMicroscopy and Microanalysis24S11258125910.1017/S1431927618006773Open DOISearch in Google Scholar

Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., ... Hawthorne, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792–1801.RamseyS. D.OchoaR.BauchanG.GulbronsonC.MoweryJ. D.CohenA.HawthorneD.2019Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymphProceedings of the National Academy of Sciences11651792180110.1073/pnas.1818371116635871330647116Search in Google Scholar

Ruffinengo, S., Eguaras, M., Floris, I., Faverin, C., Bailac, P., Ponzi, M. (2005). LD50 and repellent effect to Varroa destructor mite of different essential oil from Argentina wild plants species. Journal of Economic Entomology, 98(3), 651–655. https://doi.org/10.1603/0022-0493-98.3.651RuffinengoS.EguarasM.FlorisI.FaverinC.BailacP.PonziM.2005LD50 and repellent effect to Varroa destructor mite of different essential oil from Argentina wild plants speciesJournal of Economic Entomology983651655https://doi.org/10.1603/0022-0493-98.3.65110.1603/0022-0493-98.3.65116022288Search in Google Scholar

Sabaté, D. C., Carrillo, L., & Audisio, M. C. (2009). Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Research Microbiology, 160, 193–199. https://doi.org/10.1016/j.resmic.2009.03.002SabatéD. C.CarrilloL.AudisioM. C.2009Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samplesResearch Microbiology160193199https://doi.org/10.1016/j.resmic.2009.03.00210.1016/j.resmic.2009.03.00219358885Search in Google Scholar

Sabaté, D. C., Cruz, M. S., Benítez-Ahrendts, M. R., Audisio, M. C. (2012). Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics and Antimicrobial Proteins, 4, 39–46. https://doi.org/10.1007/s12602-011-9089-0SabatéD. C.CruzM. S.Benítez-AhrendtsM. R.AudisioM. C.2012Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony PerformanceProbiotics and Antimicrobial Proteins43946https://doi.org/10.1007/s12602-011-9089-010.1007/s12602-011-9089-026781735Search in Google Scholar

Sandionigi, A., Vicario, S., Prosdocimi, E. M., Galimberti, A., Ferri, E., Bruno, A., ... Casiraghi, M. (2015). Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing ‘phyloh’as a novel phylogenetic diversity analysis tool. Molecular ecology resources, 15(4), 697–710. https://doi.org/10.1111/1755-0998.12341SandionigiA.VicarioS.ProsdocimiE. M.GalimbertiA.FerriE.BrunoA.CasiraghiM.2015Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing ‘phyloh’as a novel phylogenetic diversity analysis toolMolecular ecology resources154697710https://doi.org/10.1111/1755-0998.1234110.1111/1755-0998.1234125367306Search in Google Scholar

Seitz, N., Traynor, K. S., Steinhauer, N., Rennich, K., Wilson, M. E.,... Delaplane, K. S. (2015). A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Research, 54(4), 292–304. https://doi.org/10.1080/00218839.2016.1153294SeitzN.TraynorK. S.SteinhauerN.RennichK.WilsonM. E.DelaplaneK. S.2015A national survey of managed honey bee 2014–2015 annual colony losses in the USAJournal of Apicultural Research544292304https://doi.org/10.1080/00218839.2016.115329410.1080/00218839.2016.1153294Search in Google Scholar

Simion, G., Trif, A., Cara, M. C., & Damiescu, L. (2011). Evaluation of tetracyclines’ and cloramphenicol's residues levels in honey from Timis County between 2007 and 2010. Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului Timisoara. Medicina Veterinaria, 41(1): 264–269. https://www.cabdirect.org/cabdirect/abstract/20113378205SimionG.TrifA.CaraM. C.DamiescuL.2011Evaluation of tetracyclines’ and cloramphenicol's residues levels in honey from Timis County between 2007 and 2010. Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului TimisoaraMedicina Veterinaria411264269https://www.cabdirect.org/cabdirect/abstract/20113378205Search in Google Scholar

Tewarson, N. C. (1983). Nutrition and reproduction in the ectoparasitic honey bee (Apis sp.) mite, Varroa jacobsoni. Eberhard-Karls-Universität Tübingen.TewarsonN. C.1983Nutrition and reproduction in the ectoparasitic honey bee (Apis sp.) mite, Varroa jacobsoniEberhard-Karls-Universität TübingenSearch in Google Scholar

Torres, M. J., Petroselli, G., Daz, M., Erra-Balsells, R., Audisio, M. C. (2015). Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria. UV-MALDI-TOF MS analysis of its bioactive compounds. World Journal of Microbiology and Biotechnology, 31(6), 929–940. https://doi.org/10.1007/s11274-015-1847-9TorresM. J.PetroselliG.DazM.Erra-BalsellsR.AudisioM. C.2015Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria. UV-MALDI-TOF MS analysis of its bioactive compoundsWorld Journal of Microbiology and Biotechnology316929940https://doi.org/10.1007/s11274-015-1847-910.1007/s11274-015-1847-925820813Search in Google Scholar

Vásquez, A., Forsgren, E., Fries, I., Paxton, R., Flaberg, E. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE. https://doi.org/10.1371/journal.pone.0033188VásquezA.ForsgrenE.FriesI.PaxtonR.FlabergE.2012Symbionts as major modulators of insect health: lactic acid bacteria and honeybeesPLoS ONEhttps://doi.org/10.1371/journal.pone.003318810.1371/journal.pone.0033188329975522427985Search in Google Scholar

Watson, K., & Stallins, A. (2016). Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geography Compass, 10(5), 222–236. https://doi.org/10.1111/gec3.12266WatsonK.StallinsA.2016Honey Bees and Colony Collapse Disorder: A Pluralistic ReframingGeography Compass105222236https://doi.org/10.1111/gec3.1226610.1111/gec3.12266Search in Google Scholar

Wilson-Rich, N., Dres, S. T., & Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology, 54(10–11), 1392–1399. https://doi.org/10.1016/j.jinsphys.2008.07.016Wilson-RichN.DresS. T.StarksP. T.2008The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera)Journal of Insect Physiology5410–1113921399https://doi.org/10.1016/j.jinsphys.2008.07.01610.1016/j.jinsphys.2008.07.01618761014Search in Google Scholar

eISSN:
2299-4831
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Zoology, other