Open Access

A Comprehensive Survey of Retrieval-Augmented Large Language Models for Decision Making in Agriculture: Unsolved Problems and Research Opportunities

, , , ,  and   
Feb 05, 2025

Cite
Download Cover

FAOSTAT ANALYTICAL BRIEF 60: Agricultural production statistics 2000-2021. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/58971ed8-c831-4ee6-ab0a-e47ea66a7e6a/content. [Accessed 01 August 2024]. Search in Google Scholar

I. Laktionov, G. Diachenko, V. Kashtan, A. Vizniuk, V. Gorev, K. Khabarlak, Y. Shedlovska, A comprehensive review of recent approaches and Hardware-Software technologies for digitalisation and intellectualisation of Open-Field crop Production: Ukrainian case study in the global context, Computers and Electronics in Agriculture, 225, 2024, pp. 1−31. doi.org/10.1016/j.compag.2024.109326. Search in Google Scholar

Strategy of Agriculture and Rural development of Ukraine - 2030. Available at: https://www.agroberichtenbuitenland.nl/documenten/publicaties/2024/06/07/ua-strategy-agro-and-rural-development [Accessed 02 August 2024]. Search in Google Scholar

Ministry of Agrarian Policy and Food of Ukraine: On Approval of the Concept of Stimulating the Development of Entrepreneur-ship in Rural Areas until 2030. Available at: https://minagro.gov.ua/npa/pro-shvalennyakoncepciyi-stimulyuvannya-rozvitkupidpriyemnictva-na-silskih-teritoriyah-do-2030-roku [Accessed 02 August 2024] (in Ukrainian). Search in Google Scholar

On the Sustainable Development Strategy of Ukraine until 2030. Available at: https://ips.ligazakon.net/document/JH6YF00A?an=332 [Accessed 02 August 2024] (in Ukrainian). Search in Google Scholar

Ministry of Digital Transformation of Ukraine: Strategy for the Development of Innovation Activities of Ukraine until 2030. Available at: https://thedigital.gov.ua/regulations/strategiyarozvitku-innovacijnoyi-diyalnosti-ukrayini-na-period-do-2030-roku%20 [Accessed 03 August 2024] (in Ukrainian). Search in Google Scholar

Cabinet of Ministers of Ukraine: Vectors of Economic Development 2030. Available at: https://nes2030.org.ua/docs/doc-vector.pdf [Accessed 03 August 2024] (in Ukrainian). Search in Google Scholar

C. Fetting, The European Green Deal, ESDN Report, Office, Vienna, December 2020. Available at: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf [Accessed 03 August 2024]. Search in Google Scholar

Approved 28 CAP Strategic Plans (2023-2027), Summary overview for 27 Member States Facts and figures. Available at: https://agriculture.ec.europa.eu/document/download/7b3a0485-c335-4e1b-a53a-9fe3733ca48f_en?filename=approved-28-cap-strategic-plans-2023-27.pdf [Accessed 23 September 2024]. Search in Google Scholar

EU Digital Strategy. EU4Digital. Available at: https://eufordigital.eu/discover-eu/eu-digital-strategy/ [Accessed 05 August 2024]. Search in Google Scholar

European Commission: For a fair, healthy and environmentally-friendly food system Farm to Fork Strategy. Available at: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf [Accessed 05 August 2024]. Search in Google Scholar

FAO The role of innovation and digitalization in the sustainable use of natural resources to accelerate the implementation of climate-resilient and low-emission pathways in agrifood systems - ERC/24/2, 34th Session of the Regional Conference for Europe, Rome, Italy, 14–17 May 2024, URL: https://openknowledge.fao.org/server/api/core/bitstreams/019ae381-8546-4cce-b224-b04a761bd57e/content. Search in Google Scholar

Sustainable Development Goals: 17 Goals to Transform our World. United Nations. Available at: https://www.un.org/en/exhibits/page/sdgs-17-goals-transform-world [Accessed 07 August 2024]. Search in Google Scholar

G20 Agriculture Ministers Declaration. Available at: https://www.g20.org/en/tracks/sherpa-track/agriculture [Accessed 07 August 2024]. Search in Google Scholar

World Bank’s Digital Agriculture Initiative. Available at: https://documents1.world-bank.org/curated/en/417641615957226621/pdf/Whats-Cooking-Digital-Transformation-of-the-Agrifood-System.pdf [Accessed 07 August 2024]. Search in Google Scholar

S.K. Routray, A. Javali, K.P. Sharmila, M.K. Jha, M. Pappa, M. Singh, Large Language Models (LLMs): Hypes and Realities, 2023 International Conference on Computer Science and Emerging Technologies (CSET), Bangalore, India, 2023, pp. 1−6, doi.org/10.1109/CSET58993.2023.10346621. Search in Google Scholar

H. Zhu, S. Qin, M. Su, C. Lin, A. Li, J. Gao, Harnessing Large Vision and Language Models in Agriculture: A Review. arXiv preprint arXiv:2407.19679, 2024, pp. 1−54. doi.org/10.48550/arXiv.2407.19679. Search in Google Scholar

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, J. Ca, J. Kandola, T. Hofmann, T. Poggio, J. Shawe-Taylor, A Neural Probabilistic Language Model, Journal of Machine Learning Research, 3, 2003, pp. 1137–1155. URL: https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf. Search in Google Scholar

S. Hochreiter, J. Schmidhuber, Long Short-Term Memory Neural Computation, 9 (8), 1997, pp. 1735–1780. doi.org/10.1162/neco.1997.9.8.1735. Search in Google Scholar

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser, I. Polo-sukhin, Attention Is All You Need, arXiv preprint arXiv:1706.03762, 2017, pp. 1−15. doi.org/10.48550/arXiv.1706.03762. Search in Google Scholar

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv preprint arXiv:1810.04805, 2018, pp. 1−16. doi.org/10.48550/arXiv.1810.04805. Search in Google Scholar

A.Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D.S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L.R. Lavaud, M.-A. Lachaux, P. Stock, T.L. Scao, T. Lavril, T. Wang, T. Lacroix, W.E. Sayed, Mistral 7B, arXiv preprint arXiv:2310.06825, 2023, pp. 1−9. doi.org/10.48550/arXiv.2310.06825. Search in Google Scholar

L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, M.-H. Yang, Diffusion Models: A Comprehensive Survey of Methods and Applications, arXiv preprint arXiv:2209.00796, 2024, pp. 1−54. doi.org/10.48550/arXiv.2209.00796. Search in Google Scholar

M. Gupta, C. Akiri, K. Aryal, E. Parker, L. Praharaj, From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and Privacy, IEEE Access, 11, 2023, pp. 80218−80245. doi.org/10.1109/ACCESS.2023.3300381. Search in Google Scholar

M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, A. Ahmed, Big Bird: Transformers for Longer Sequences, arXiv preprint arXiv:2007.14062, 2021, pp. 1−42. doi.org/10.48550/arXiv.2007.14062. Search in Google Scholar

S. Sayago, M. Ribera, Apple Siri (input) + Voice Over (output) = a de facto marriage, 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, New York, NY, USA, 2021, pp. 6−10. doi.org/10.1145/3439231.3440603. Search in Google Scholar

M. Ford, W. Palmer, Alexa are you listening to me? An analysis of Alexa voice service network traffic, Pers Ubiquit Comput, 23, 2019, pp. 67–79. doi.org/10.1007/s00779-018-1174-x. Search in Google Scholar

M. Aggarwal, M. Madhukar, IBM’s Watson Analytics for Health Care, Cloud Computing Systems and Applications in Healthcare, 2017, pp. 117–134. doi.org/10.4018/978-1-5225-1002-4.ch007. Search in Google Scholar

L. Schwartz-croft, Effects of ROSS Intelligence and NDAS, highlighting the need for AI regulation, SSRN Electronic Journal, 2024. doi.org/10.2139/ssrn.4727662. Search in Google Scholar

A. Caines, L. Benedetto, S. Taslimipoor, C. Davis, Y. Gao, Ø. Andersen, Z. Yuan, M. Elliott, R. Moore, C. Bryant, M. Rei, H. Yannakoudakis, A. Mullooly, D. Nicholls, P. Buttery, On the application of Large Language Models for language teaching and assessment technology, arXiv preprint arXiv:2307.08393v1, 2023, pp. 1−25. doi.org/10.48550/arXiv.2307.08393. Search in Google Scholar

J. Su, C. Jiang, X. Jin, Y. Qiao, T. Xiao, H. Ma, R. Wei, Z. Jing, J. Xu, J. Lin, Large Language Models for Forecasting and Anomaly Detection: A Systematic Literature Review, arXiv preprint arXiv:2402.10350v1, 2024, pp. 1−56. doi.org/10.48550/arXiv.2402.10350. Search in Google Scholar

B. Zhang, H. Yang, X.-Y. Liu, Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models, arXiv preprint arXiv:2306.12659, 2023, pp. 1−7. doi.org/10.48550/arXiv.2306.12659. Search in Google Scholar

J.O. Krugmann, J. Hartmann, Sentiment Analysis in the Age of Generative AI, Cust. Need. and Solut, 11 (3), 2024, pp. 1−19. doi.org/10.1007/s40547-024-00143-4. Search in Google Scholar

J. Fields, K. Chovanec and P. Madiraju, A Survey of Text Classification With Transformers: How Wide? How Large? How Long? How Accurate? How Expensive? How Safe?, IEEE Access, 12, 2024, pp. 6518−6531. doi.org/10.1109/ACCESS.2024.3349952. Search in Google Scholar

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, I. Stoica, Judging LLM-as-a-judge with MT-Bench and Chatbot Arena, arXiv preprint arXiv:2306.05685, 2023, pp. 1−29. doi.org/10.48550/arXiv.2306.05685. Search in Google Scholar

H. Tamoyan, H. Schuff, I. Gurevych, LLM Roleplay: Simulating Human-Chatbot Interaction, arXiv preprint arXiv:2407.03974, 2024, pp. 1−26. doi.org/10.48550/arXiv.2407.03974. Search in Google Scholar

S. Vakayil, D. S. Juliet, A. J and S. Vakayil, RAG-Based LLM Chatbot Using Llama-2, 2024 7th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 2024, pp. 1−5. doi.org/10.1109/ICDCS59278.2024.10561020. Search in Google Scholar

K. S. John, G. A. Roy and B. P. S, LLM Based 3D Avatar Assistant, 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India, 2024, pp. 1−5. doi.org/10.1109/ICTEST60614.2024.10576146. Search in Google Scholar

L. Ramaul, P. Ritala, M. Ruokonen, Creational and conversational AI affordances: How the new breed of chatbots is revolutionizing knowledge industries, Business Horizons, 67 (5), 2024, pp. 615−627. doi.org/10.1016/j.bushor.2024.05.006. Search in Google Scholar

D. Leiker, S. Finnigan, A. R. Gyllen, M. Cukurova, Prototyping the use of Large Language Models (LLMs) for adult learning content creation at scale, arXiv preprint arXiv:2306.01815, 2023, pp. 1−5. doi.org/10.48550/arXiv.2306.01815. Search in Google Scholar

R. Gallotta, G. Todd, M. Zammit, S. Earle, A. Liapis, J. Togelius, G. N. Yannakakis, Large Language Models and Games: A Survey and Roadmap, IEEE Transactions on Games, 2024, pp. 1−18. doi.org/10.1109/TG.2024.3461510. Search in Google Scholar

D. Barman, Z. Guo, O. Conlan, The Dark Side of Language Models: Exploring the Potential of LLMs in Multimedia Disinformation Generation and Dissemination, Machine Learning with Applications, 16, 2024, pp. 1−17. doi.org/10.1016/j.mlwa.2024.100545. Search in Google Scholar

O. D. Okey, E. U. Udo, R. L. Rosa, D. Z. Rodríguez, J. H. Kleinschmidt, Investigating ChatGPT and cybersecurity: A perspective on topic modeling and sentiment analysis, Computers & Security, 135, 2023. doi.org/10.1016/j.cose.2023.103476. Search in Google Scholar

A. Zaboli, S. L. Choi, T.-J. Song, J. Hong, ChatGPT and Other Large Language Models for Cybersecurity of Smart Grid Applications, arXiv preprint arXiv:2311.05462, 2024, pp. 1−5. doi.org/10.48550/arXiv.2311.05462. Search in Google Scholar

M. Guastalla, Y. Li, A. Hekmati, B. Krishna-machari, Application of Large Language Models to DDoS Attack Detection. In: Chen, Y., Lin, CW., Chen, B., Zhu, Q. (eds) Security and Privacy in Cyber-Physical Systems and Smart Vehicles. SmartSP 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, Cham, 552, 2024, pp. 83−99. doi.org/10.1007/978-3-031-51630-6_6. Search in Google Scholar

Y. Chen, M. Cui, D. Wang, Y. Cao, P. Yang, B. Jiang, Z. Lu, B. Liu, A survey of large language models for cyber threat detection, Computers & Security, 145, 2024, pp. 104016. doi.org/10.1016/j.cose.2024.104016. Search in Google Scholar

N. Capodieci, C. Sanchez-Adames, J. Harris and U. Tatar, The Impact of Generative AI and LLMs on the Cybersecurity Profession, 2024 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 2024, pp. 448−453. doi.org/10.1109/SIEDS61124.2024.10534674. Search in Google Scholar

M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M. Fahad, S. Sakib, M. M. J. Mim, J. Ahmad, M. E. Ali, S. Azam, A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges, IEEE Access, 12, 2024, pp. 26839−26874. doi.org/10.1109/ACCESS.2024.3365742. Search in Google Scholar

Z. Liu, Y. Tang, X. Luo, Y. Zhou, L.F. Zhang, No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation by ChatGPT, IEEE Transactions on Software Engineering, 50 (6), 2024, pp. 1548−1584. doi.org/10.1109/TSE.2024.3392499. Search in Google Scholar

A. Onan, H. A. Alhumyani, DeepExtract: Semantic-driven extractive text summarization framework using LLMs and hierarchical positional encoding, Journal of King Saud University - Computer and Information Sciences, 36 (8), 2024, pp. 1−19. doi.org/10.1016/j.jksuci.2024.102178. Search in Google Scholar

P. Laban, W. Kryscinski, D. Agarwal, A. Fabbri, C. Xiong, S. Joty, C.-S. Wu, SummEd-its: Measuring LLM Ability at Factual Reasoning Through The Lens of Summarization, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Singapore, 2023, pp. 9662−9676. doi.org/10.18653/v1/2023.emnlp-main.600. Search in Google Scholar

T. Zhang, F. Ladhak, E. Durmus, P. Liang, K. McKeown, T. B. Hashimoto, Benchmarking Large Language Models for News Summarization, Transactions of the Association for Computational Linguistics, 12, 2024, pp. 39−57. doi.org/10.1162/tacl_a_00632. Search in Google Scholar

K. Pandya, M. Holia, Automating Customer Service using LangChain: Building custom open-source GPT Chatbot for organizations, arXiv preprint arXiv:2310.05421, 2023, 1-4. doi.org/10.48550/arXiv.2310.05421. Search in Google Scholar

Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, X. Wang, Z. Li, Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering, in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Washington DC, USA, 2024, pp. 2905−2909. doi.org/10.1145/3626772.3661370. Search in Google Scholar

J. J. Bird, A. Lotfi, Customer service chatbot enhancement with attention- based transfer learning, Knowledge-Based Systems, 301, 2024, pp. 1−12. doi.org/10.1016/j.knosys.2024.112293. Search in Google Scholar

A. Ishtiaq, K. Munir, A. Raza, N.A. Samee, M.M. Jamjoom and Z. Ullah, Product Helpfulness Detection With Novel Transformer Based BERT Embedding and Class Probability Features, IEEE Access, 12, 2024, pp. 55905−55917. doi.org/10.1109/ACCESS.2024.3390605. Search in Google Scholar

Y. Mehdi, Reinventing search with a new AI-powered Microsoft Bing and Edge, your copilot for the web, The Official Microsoft Blog, Feb. 07, 2023. Available at: https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/ [Accessed 19 October 2024]. Search in Google Scholar

Y. Li, S. Wang, H. Ding, H. Chen, Large Language Models in Finance: A Survey, in: Proceedings of the Fourth ACM International Conference on AI in Finance, ACM, Brooklyn, NY, USA, 2023, pp. 374−382. doi.org/10.1145/3604237.3626869. Search in Google Scholar

S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, G. Mann, BloombergGPT: A Large Language Model for Finance, arXiv preprint arXiv:2303.17564, 2023, pp. 1−76. doi.org/10.48550/arXiv.2303.17564. Search in Google Scholar

Q. Xie, W. Han, X. Zhang, Y. Lai, M. Peng, A. Lopez-Lira, J. Huang, PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance, arXiv preprint arXiv:2306.05443, 2023, pp. 1−12. doi.org/10.48550/arXiv.2306.05443. Search in Google Scholar

M. S. Khan, H. Umer, ChatGPT in finance: Applications, challenges, and solutions, Heliyon, 10(2), 2024, pp. 1−8. doi.org/10.1016/j.heliyon.2024.e24890. Search in Google Scholar

How JPMorgan Chase’s COIN is Revolutionizing Financial Operations with AI, Medium, Available at: https://medium.com/@the_AI_ZONE/howjpmorgan-chases-coin-is-revolutionizingfinancial-operations-with-ai-120a2938dab7 [Accessed 19 October 2024]. Search in Google Scholar

A.J. Thirunavukarasu, D.S.J. Ting, K. Elangovan, L. Gutierrez, T.F. Tan, D.S.W. Ting, Large language models in medicine. Nat Med, 29, 2023, pp. 1930–1940. doi.org/10.1038/s41591-023-02448-8. Search in Google Scholar

M. Sallam, ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns, Healthcare, 11 (6), 2023, pp. 1−20. doi.org/10.3390/healthcare11060887. Search in Google Scholar

M. Cascella, J. Montomoli, V. Bellini et al., Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios, J. Med. Syst., 47 (33), 2023, pp. 1−5. doi.org/10.1007/s10916-023-01925-4. Search in Google Scholar

S. Pashangpour, G. Nejat, The Future of Intelligent Healthcare: A Systematic Analysis and Discussion on the Integration and Impact of Robots Using Large Language Models for Healthcare, Robotics, 13 (8), 2024, pp. 1−43. doi.org/10.3390/robotics13080112. Search in Google Scholar

C. Peng, X. Yang, A. Chen et al., A study of generative large language model for medical research and healthcare, npj Digit. Med., 6 (210), 2023, pp. 1−10. doi.org/10.1038/s41746-023-00958-w. Search in Google Scholar

X. Wu, B. Zhang, ChatGPT promotes health-care: current applications and potential challenges, Int. J. Surg., 110 (1), 2024, pp. 606–608. doi.org/10.1097/JS9.0000000000000802. Search in Google Scholar

Med-PaLM. Available at: https://sites.research.google/med-palm [Accessed 02 August 2024]. Search in Google Scholar

L. Martin, N. Whitehouse, S. Yiu, L. Catterson, R. Perera, Better Call GPT: Comparing Large Language Models Against Lawyers, arXiv preprint arXiv:2401.16212, 2024, p. 1-16. doi.org/10.48550/arXiv.2401.16212 Search in Google Scholar

W. Han et al., Human-Centered and AI-Empowered Machine to Enhance Court Productivity and Legal Assistance, Information Sciences, 2024, pp. 121052−121052. doi.org/10.1016/j.ins.2024.121052 Search in Google Scholar

P. Sarzaeim, Q. H. Mahmoud, A. Azim, A Framework for LLM-Assisted Smart Policing System, IEEE Access, 12, 2024, pp. 74915–74929. doi.org/10.1109/ACCESS.2024.3404862 Search in Google Scholar

I.C. Peláez-Sánchez, D. Velarde-Camaqui, L.D. Glasserman-Morales, The Impact of Large Language Models on Higher Education: Exploring the Connection Between AI and Education 4.0, Front. Educ., 9, 2024, pp. 1−21. doi.org/10.3389/feduc.2024.1392091 Search in Google Scholar

E. Waisberg, J. Ong, M. Masalkhi, A.G. Lee, Large Language Model (LLM)-Driven Chatbots for Neuro-Ophthalmic Medical Education, Eye, 38, 2024, pp. 639–641. doi.org/10.1038/s41433-023-02759-7 Search in Google Scholar

J. Jeon, S. Lee, Large Language Models in Education: A Focus on the Complementary Relationship Between Human Teachers and ChatGPT, Educ Inf Technol, 28, 2023, pp. 15873–15892. doi.org/10.1007/s10639-023-11834-1 Search in Google Scholar

M. Hosseini, C.A. Gao, D.M. Liebovitz, A.M. Carvalho, F.S. Ahmad, Y. Luo, N. Mac-Donald, K.L. Holmes, A. Kho, An Exploratory Survey About Using ChatGPT in Education, Healthcare, and Research, PLoS ONE, 18 (10), 2023, pp. 1−14. doi.org/10.1371/journal.pone.0292216. Search in Google Scholar

B. Alsafari, E. Atwell, A. Walker, M. Callaghan, Towards Effective Teaching Assistants: From Intent-Based Chat-bots to LLM-Powered Teaching Assistants, Natural Language Processing Journal, 2024, pp. 100101−100101. doi.org/10.1016/j.nlp.2024.100101. Search in Google Scholar

Z. Epstein, A. Hertzmann, Art and the Science of Generative AI, Science, 380, 2023, pp.1110–1111. doi.org/10.1126/science.adh4451. Search in Google Scholar

J. Tsao, C. Nogues, Beyond the Author: Artificial Intelligence, Creative Writing and Intellectual Emancipation, Poetics, 102, 2024, pp. 1−12. doi.org/10.1016/j.poetic.2024.101865. Search in Google Scholar

S. Zhu, Z. Wang, Y. Zhuang, Y. Jiang, M. Guo, X. Zhang, Z. Gao, Exploring the Impact of ChatGPT on Art Creation and Collaboration: Benefits, Challenges and Ethical Implications, Telematics and Informatics Reports, 14, 2024, pp. 100138−100138. doi.org/10.1016/j.teler.2024.100138. Search in Google Scholar

C. Gan, Q. Zhang, T. Mori, Application of LLM Agents in Recruitment: A Novel Framework for Resume Screening, arXiv preprint arXiv:2401.08315, 2024, pp. 1−18. doi.org/10.48550/arXiv.2401.08315. Search in Google Scholar

R. J. Sunico, S. Pachchigar, V. Kumar, I. Shah, J. Wang, I. Song, Resume Building Application based on LLM (Large Language Model), 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2023, pp. 486−492. doi.org/10.1109/ICCCIS60361. 2023.10425602. Search in Google Scholar

G. Vagale, S. Y. Bhat, P. P. P. Dharishini, P. GK, ProspectCV: LLM-Based Advanced CV-JD Evaluation Platform, 2024 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, 2024, pp. 1−6. doi.org/10.1109/SCES61914.2024.10652548. Search in Google Scholar

S. Vijayakumar, F. Louis, Revolutionizing Staffing and Recruiting with Contextual Knowledge Graphs and QNLP: An End-to-End Quantum Training Paradigm, 2023 IEEE International Conference on Knowledge Graph (ICKG), Shanghai, China, 2023, pp. 45−51. doi.org/10.1109/ICKG59574.2023.00011. Search in Google Scholar

D. Gao, K. Chen, B. Chen, H. Dai, L. Jin, W. Jiang, W. Ning, S. Yu, Q. Xuan, X. Cai, L. Yang, Z. Wang, LLMs-based Machine Translation for E-commerce, Expert Systems with Applications, 258, 2024, pp. 125087−125087. doi.org/10.1016/j.eswa.2024.125087. Search in Google Scholar

K. I. Roumeliotis, N. D. Tselikas, D. K. Nasiopoulos, LLMs in E-commerce: A Comparative Analysis of GPT and LLaMA Models in Product Review Evaluation, Natural Language Processing Journal, 6, 2024, pp. 1−15. doi.org/10.1016/j.nlp.2024.100056. Search in Google Scholar

A. Mari, A. Mandelli, R. Algesheimer, Empathic Voice Assistants: Enhancing Consumer Responses in Voice Commerce, Journal of Business Research, 175, 2024, pp. 114566−114566. doi.org/10.1016/j.jbusres.2024.114566. Search in Google Scholar

A. Sharma et al., Automatic Data Transformation Using Large Language Model - An Experimental Study on Building Energy Data, 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1824−1834. doi.org/10.1109/BigData59044. 2023.10386931. Search in Google Scholar

S. Majumder, L. Dong, F. Doudi, Y. Cai, C. Tian, D. Kalathil, K. Ding, A. A. Thatte, N. Li, L. Xie, Exploring the Capabilities and Limitations of Large Language Models in the Electric Energy Sector, Joule, 8 (6), 2024, pp. 1544−1549. doi.org/10.1016/j.joule.2024.05.009. Search in Google Scholar

G. Jiang, Z. Ma, L. Zhang, J. Chen, EPlus-LLM: A Large Language Model-Based Computing Platform for Automated Building Energy Modeling, Applied Energy, 367, 2024, pp. 123431−123431. doi.org/10.1016/j.apenergy.2024.123431. Search in Google Scholar

J. Lu, X. Tian, C. Zhang, Y. Zhao, J. Zhang, W. Zhang, C. Feng, J. He, J. Wang, F. He, Evaluation of Large Language Models (LLMs) on the Mastery of Knowledge and Skills in the Heating, Ventilation and Air Conditioning (HVAC) Industry, Energy and Built Environment, 2024, pp. 1−18. doi.org/10.1016/j.enbenv.2024.03.010. Search in Google Scholar

N. Rane, A. Tawde, S. Choudhary, J. Rane, Contribution and Performance of Chat-GPT and Other Large Language Models (LLM) for Scientific and Research Advancements: A Double-Edged Sword, International Research Journal of Modern Engineering and Technology, 5, 2023, pp. 875−899. doi.org/10.56726/IRJMETS45312. Search in Google Scholar

S. Jiang, D. Evans-Yamamoto, D. Bersenev, S. K. Palaniappan, A. Yachie-Kinoshita, ProtoCode: Leveraging Large Language Models (LLMs) for Automated Generation of Machine-Readable PCR Protocols from Scientific Publications, SLAS Technology, 29 (3), 2024, pp. 1−6. doi.org/10.1016/j.slast.2024.100134. Search in Google Scholar

T.A. Mohamed, M.H. Khafgy, A.B. Elsedawy, A.S. Ismail, A Proposed Model for Distinguishing Between Human-Based and ChatGPT Content in Scientific Articles, IEEE Access, 12, 2024, pp. 121251−121260. doi.org/10.1109/ACCESS.2024.3448315. Search in Google Scholar

B. Wang, X. Zhang, S. Li, Y. Wang, The Practice of Enhancing Learning and Scientific Innovative Abilities Using LLM-Based AI Tools, 2024 6th International Conference on Computer Science and Technologies in Education (CSTE), Xi’an, China, 2024, pp. 166−170. doi.org/10.1109/CSTE62025.2024.00038. Search in Google Scholar

B. Silva, L. Nunes, R. Estevão, V. Aski, R. Chandra, GPT-4 as an Agronomist Assistant? Answering Agriculture Exams Using Large Language Models, arXiv preprint arXiv:2310.06225, 2023, pp. 1−15. doi.org/10.48550/arXiv.2310.06225. Search in Google Scholar

R. Peng, K. Liu, P. Yang, Z. Yuan, S. Li, Embedding-Based Retrieval with LLM for Effective Agriculture Information Extracting from Unstructured Data, arXiv preprint arXiv:2308.03107, 2023, pp. 1−6. doi.org/10.48550/arXiv.2308.03107. Search in Google Scholar

G. Lu, S. Li, G. Mai, J. Sun, D. Zhu, L. Chai, H. Sun, X. Wang, H. Dai, N. Liu, R. Xu, D. Petti, C. Li, T. Liu, AGI for Agriculture, arXiv preprint arXiv:2304.06136, 2023, pp. 1−18. doi.org/10.48550/arXiv.2304.06136. Search in Google Scholar

X. Zhao, B. Chen, M. Ji, X. Wang, Y. Yan, J. Zhang, S. Liu, M. Ye, C. Lv, Implementation of Large Language Models and Agricultural Knowledge Graphs for Efficient Plant Disease Detection, Agriculture, 14 (8), 2024, pp. 1–24. doi.org/10.3390/agriculture14081359. Search in Google Scholar

P. Yu, B. Lin, A Framework for Agricultural Intelligent Analysis Based on a Visual Language Large Model, Applied Sciences, 14 (18), 2024, pp. 1–15. doi.org/10.3390/app14188350. Search in Google Scholar

M. Trzcinski, S. Łukasik, A.H. Gandomi, Optimizing the Structures of Transformer Neural Networks Using Parallel Simulated Annealing, JAISCR, 14 (3), 2024, pp. 267–282. doi.org/10.2478/jaiscr-2024-0015. Search in Google Scholar

W. Fan, Y. Ding, L. Ning, S. Wang, H. Li, D. Yin, T.-S. Chua, Q. Li, A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models, arXiv preprint arXiv:2405.06211, 2024, pp. 1−18. doi.org/10.48550/arXiv.2405.06211. Search in Google Scholar

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang, H. Wang, Retrieval-Augmented Generation for Large Language Models: A Survey, arXiv preprint arXiv:2312.10997, 2024, pp. 1−21. doi.org/10.48550/arXiv.2312.10997. Search in Google Scholar

X. Chen, S. Wiseman, BM25 Query Augmentation Learned End-to-End, arXiv preprint arXiv:2305.14087, 2023, pp. 1−6. doi.org/10.48550/arXiv.2305.14087. Search in Google Scholar

T. Formal, C. Lassance, B. Piwowarski, S. Clinchant, SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval, arXiv preprint arXiv:2109.10086, 2021, pp. 1−6. doi.org/10.48550/arXiv.2109.10086. Search in Google Scholar

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv preprint arXiv:1810.04805, 2019, pp. 1−16. doi.org/10.48550/arXiv.1810.04805. Search in Google Scholar

L. Wang, N. Yang, F. Wei, Query2doc: Query Expansion with Large Language Models, arXiv preprint arXiv:2303.07678, 2023, pp. 1−10. doi.org/10.48550/arXiv.2303.07678. Search in Google Scholar

X. Ma, Y. Gong, P. He, H. Zhao, N. Duan, Query Rewriting for Retrieval-Augmented Large Language Models, arXiv preprint arXiv:2305.14283, 2023, pp. 1−13. doi.org/10.48550/arXiv.2305.14283. Search in Google Scholar

G. V. Cormack, C. L. A. Clarke, S. Buettcher, Reciprocal Rank Fusion Outperforms Condorcet and Individual Rank Learning Methods, in Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2009, pp. 758–759. doi.org/10.1145/1571941.1572114. Search in Google Scholar

P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, A. Chadha, A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications, arXiv preprint arXiv:2402.07927, 2024, pp. 1−9. doi.org/10.48550/arXiv.2402.07927. Search in Google Scholar

RAG in Production: Deployment Strategies and Practical Considerations. Available at: https://www.aporia.com/learn/ragin-production/ [Accessed 18 November 2024]. Search in Google Scholar

OpenAI Platform: Function calling. Available at: https://platform.openai.com/docs/guides/function-calling [Accessed 30 August 2024]. Search in Google Scholar

E. Eigner, T. Händler, Determinants of LLM-assisted Decision-Making, arXiv preprint arXiv:2402.17385, 2024, pp. 1−44. doi.org/10.48550/arXiv.2402.17385. Search in Google Scholar

J. Pawłowska, K. Rydzewska, A. Wierzbicki, Using Cognitive Models to Understand and Counteract the Effect of Self-Induced Bias on Recommendation Algorithms, JAISCR, 13 (2), 2023, pp. 73−94. doi.org/10.2478/jaiscr-2023-0008. Search in Google Scholar

H. Chatoui, O. Ata, Automated Evaluation of the Virtual Assistant in BLEU and ROUGE Scores, Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2021, pp. 1–6. doi.org/10.1109/HORA52670.2021.9461351. Search in Google Scholar

H. Yu, A. Gan, K. Zhang, S. Tong, Q. Liu, Z. Liu, Evaluation of Retrieval-Augmented Generation: A Survey, arXiv preprint arXiv:2405.07437, 2024, pp. 1−21. doi.org/10.48550/arXiv.2405.07437. Search in Google Scholar

E. Elbasi, N. Mostafa, C. Zaki, Z. AlAr-naout, A. E. Topcu, L. Saker, Optimizing Agricultural Data Analysis Techniques through AI-Powered Decision-Making Processes, Applied Sciences, 14 (17), 2024, pp. 1−26. doi.org/10.3390/app14178018. Search in Google Scholar

M. Mirali, Generative AI and Agriculture: A New Era of Farming Efficiency, Grain Data Solutions Inc., 2024. Available at: https://graindatasolutions.com/generative-ai-agriculture-farming-efficiency/ [Accessed 23 November 2024]. Search in Google Scholar

M. A. Hamed, M. F. El-Habib, R. Z. Sababa, M. M. Al-Hanjor, B. S. Abunasser, S. S. Abu-Naser, Artificial Intelligence in Agriculture: Enhancing Productivity and Sustainability, International Journal of Engineering and Information Systems (IJEAIS), 8 (8), 2024, pp. 1–8. URL: https://philarchive.org/archive/HAMAII-2. Search in Google Scholar

D. R. Kale, J. Nalvade, P. S. Ran-dive, S. Hirve, Artificial Intelligence in Sustainable Agriculture: Enhancing Efficiency and Reducing Environmental Impact, Industrial Engineering Journal, 53 (9), 2024, pp. 103−109. URL: https://www.researchgate.net/publication/382949284_Artificial_Intelligence_In_Sustainable_Agriculture_Enhancing_Efficiency_and_Reducing_Environmental_Impact Search in Google Scholar

D. Tirkey, K. K. Singh, S. Tripathi, Performance analysis of AI-based solutions for crop disease identification, detection, and classification, Smart Agricultural Technology, 5, 2023, pp. 1−13. doi.org/10.1016/j.atech.2023.100238. Search in Google Scholar

A. Sarangi, S. K. Raula, S. Ghoshal, S. Kumar, C. S. Kumar, N. Padhy, Enhancing Process Control in Agriculture: Leveraging Machine Learning for Soil Fertility Assessment, Engineering Proceedings, 67 (1), 2024, pp. 1−11. doi.org/10.3390/engproc2024067031. Search in Google Scholar

W. Geng, L. Liu, J. Zhao, X. Kang, W. Wang, Digital Technologies Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach, Sustainability, 16 (11), 2024, pp. 1−24. doi.org/10.3390/su16114431. Search in Google Scholar

V. Varriale, A. Cammarano, F. Michelino, M. Caputo, Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems, Journal of Intelligent Manufacturing, 2023, pp. 1−33. doi.org/10.1007/s10845-023-02244-8. Search in Google Scholar

Y. Qin, Z. Xu, X. Wang, M. Skare, Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review, Journal of the Knowledge Economy, 15 (1), 2024, pp. 1736–1770. doi.org/10.1007/s13132-023-01183-2. Search in Google Scholar

A. Balaguer, V. Benara, R. L. de Freitas Cunha, R. de M. Estevão Filho, T. Hendry, D. Holstein, J. Marsman, N. Mecklenburg, S. Malvar, L. O. Nunes, R. Padilha, M. Sharp, B. Silva, S. Sharma, V. Aski, R. Chandra, RAG vs Fine-tuning: Pipelines, Trade-offs, and a Case Study on Agriculture, arXiv preprint arXiv:2401.08406, 2024, pp. 1−33. doi.org/10.48550/arXiv.2401.08406. Search in Google Scholar

J. Benzinho, J. Ferreira, J. Batista, L. Pereira, M. Maximiano, V. Távora, R. Gomes, O. Remédios, LLM Based Chatbot for Farm-to-Fork Blockchain Traceability Platform, Applied Sciences, 14 (19), 2024, pp. 1−15. doi.org/10.3390/app14198856. Search in Google Scholar

R. Jagerman, H. Zhuang, Z. Qin, X. Wang, M. Bendersky, Query Expansion by Prompting Large Language Models, arXiv preprint arXiv:2305.03653, 2023, pp. 1−7. doi.org/10.48550/arXiv.2305.03653. Search in Google Scholar

B. Nouriinanloo, M. Lamothe, Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models, arXiv preprint arXiv:2406.18740, 2024, pp. 1−10. doi.org/10.48550/arXiv.2406.18740. Search in Google Scholar

R. Mohandoss, Context-based Semantic Caching for LLM Applications, 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, Singapore, 2024, pp. 371−376. doi.org/10.1109/CAI59869.2024.00075. Search in Google Scholar

Recursively split by character. LangChain. Available at: https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/ [Accessed 31 August 2024]. Search in Google Scholar

Y. Wang, N. Lipka, R.A. Rossi, A. Siu, R. Zhang, T. Derr, Knowledge Graph Prompting for Multi-Document Question Answering, arXiv preprint arXiv:2308.11730, 2023, pp. 1−22. doi.org/10.48550/arXiv.2308.11730. Search in Google Scholar

Cohere: Rerank Overview. Available at: https://docs.cohere.com/docs/overview [Accessed 30 August 2024]. Search in Google Scholar

Voyage AI: Rerankers. Available at: https://docs.voyageai.com/docs/reranker [Accessed 30 August 2024]. Search in Google Scholar

W. Sun, L. Yan, X. Ma, S. Wang, P. Ren, Z. Chen, D. Yin, Z. Ren, Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents, arXiv preprint arXiv:2304.09542, 2023, pp. 1−20. doi.org/10.48550/arXiv.2304.09542. Search in Google Scholar

J.-j. Park, S.-j. Choi, LLMs for Enhanced Agricultural Meteorological Recommendations, arXiv preprint arXiv:2408.04640, 2024, pp. 1−10. doi.org/10.48550/arXiv.2408.04640. Search in Google Scholar

T. Wang, N. Wang, Y. Cui, J. Liu. Agricultural Technology Knowledge Intelligent Question-Answering System Based on Large Language Model, Smart Agriculture, 5 (4), 2023, pp. 105−116. doi.org/10.12133/j.smartag.SA202311005. Search in Google Scholar

X. V. Lin, X. Chen, M. Chen, W. Shi, M. Lomeli, R. James, P. Rodriguez, J. Kahn, G. Szilvasy, M. Lewis, L. Zettlemoyer, S. Yih, RADIT: Retrieval-Augmented Dual Instruction Tuning, arXiv preprint arXiv:2310.01352, 2024, pp. 1−25. doi.org/10.48550/arXiv.2310.01352 Search in Google Scholar

Q. Ye, H. Xu, G. Xu, J. Ye, M. Yan, Y. Zhou, J. Wang, A. Hu, P. Shi, Y. Shi, C. Li, Y. Xu, H. Chen, J. Tian, Q. Qian, J. Zhang, F. Huang, J. Zhou, mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality, arXiv preprint arXiv:2304.14178, 2024, pp. 1−21. doi.org/10.48550/arXiv.2304.14178. Search in Google Scholar

P. Qi, Movie Visual and Speech Analysis Through Multi-Modal LLM for Recommendation Systems, IEEE Access, 12, 2024, pp. 145686−145702. doi.org/10.1109/ACCESS.2024.3471568. Search in Google Scholar

L. Chen, L. Wang, H. Dong, Y. Du, J. Yan, F. Yang, S. Li, P. Zhao, S. Qin, S. Rajmohan, Q. Lin, D. Zhang, Introspective Tips: Large Language Model for In-Context Decision Making, arXiv preprint arXiv:2305.11598, 2023, pp. 1−22. doi.org/10.48550/arXiv.2305.11598. Search in Google Scholar

M. Chen, Z. Tao, W. Tang, T. Qin, R. Yang, C. Zhu, Enhancing emergency decision-making with knowledge graphs and large language models, International Journal of Disaster Risk Reduction, 113, 2024, pp. 104804. doi.org/10.1016/j.ijdrr.2024.104804. Search in Google Scholar

D. De Clercq, E. Nehring, H. Mayne, A. Mahdi, Large language models can help boost food production, but be mindful of their risks, Frontiers in Artificial Intelligence, 7, 2024, pp. 1−11. doi.org/10.3389/frai.2024.1326153. Search in Google Scholar

K. Gikunda, Harnessing Artificial Intelligence for Sustainable Agricultural Development in Africa: Opportunities, Challenges, and Impact, arXiv preprint arXiv:2401.06171, 2024, pp. 1−8. doi.org/10.48550/arXiv.2401.06171. Search in Google Scholar

M. Gardezi, B. Joshi, D. M. Rizzo, M. Ryan, E. Prutzer, S. Brugler, A. Dadkhah, Artificial Intelligence in Farming: Challenges and Opportunities for Building Trust, Agronomy Journal, 116 (3), 2024, pp. 1217−1228. doi.org/10.1002/agj2.21353. Search in Google Scholar

S. Kumar S, A. K. M. Ajmal Khan, I. A. Banday, M. Gada, V. V. Shanbhag, Overcoming LLM Challenges Using RAG-Driven Precision in Coffee Leaf Disease Remediation, arXiv preprint arXiv:2405.01310, 2024, pp. 1−6. doi.org/10.48550/arXiv.2405.01310. Search in Google Scholar

J. Li, M. Xu, L. Xiang, D. Chen, W. Zhuang, X. Yin, Z. Li, Large Language Models and Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges, arXiv preprint arXiv:2308.06668, 2024, pp. 1−18. doi.org/10.48550/arXiv.2308.06668. Search in Google Scholar

A. Mishra, A. Asai, V. Balachandran, Y. Wang, G. Neubig, Y. Tsvetkov, H. Hajishirzi, Fine-grained Hallucination Detection and Editing for Language Models, arXiv preprint arXiv:2401.06855, 2024, pp. 1−23. doi.org/10.48550/arXiv.2401.06855. Search in Google Scholar

G. Perković, A. Drobnjak, I. Botički, Hallucinations in LLMs: Understanding and Addressing Challenges, in Proceedings of the 2024 47th MIPRO ICT and Electronics Convention, 2024, pp. 2084−2088. doi.org/10.1109/MIPRO60963.2024.10569238. Search in Google Scholar

W. de Almeida da Silva, L. C. Costa Fonseca, S. Labidi, J. C. Lima Pacheco, Mitigation of Hallucinations in Language Models in Education: A New Approach of Comparative and Cross-Verification, in Proceedings of the 2024 IEEE International Conference on Advanced Learning Technologies (ICALT), 2024, pp. 207−209. doi.org/10.1109/ICALT61570.2024.00066. Search in Google Scholar

R. Mark, Ethics of Using AI and Big Data in Agriculture: The Case of a Large Agriculture Multinational, The ORBIT Journal, 2 (2), 2019, pp. 1−27. doi.org/10.29297/orbit.v2i2.109. Search in Google Scholar

P. B. Falola, A. E. Adeniyi, O. A. Madamidola, J. B. Awotunde, O. A. Olukiran, S. O. Akinola, Artificial Intelligence in Agriculture: The Potential for Efficiency and Sustainability, With Ethical Considerations. In H. Kannan, R. Rodriguez, Z. Paprika, & A. Ade-Ibijola (Eds.), Exploring Ethical Dimensions of Environmental Sustainability and Use of AI, IGI Global Scientific Publishing, 2024, pp. 307−329. doi.org/10.4018/979-8-3693-0892-9.ch015. Search in Google Scholar

P. Karkhile, V. Kavade, P. Bahalkar, Use of Ethical AI in Agriculture, International Journal for Multidisciplinary Research (IJFMR), 6 (3), 2024, pp. 1−12. URL: https://www.ijfmr.com/papers/2024/3/20356.pdf. Search in Google Scholar

M. Uddin, A. Chowdhury, M. A. Kabir, Legal and ethical aspects of deploying artificial intelligence in climate-smart agriculture, AI & Society, 39 (1), 2024, pp. 221−234. doi:10.1007/s00146-022-01421-2. Search in Google Scholar

B. Kisliuk, J. C. Krause, H. Meemken, J. C. Saborío Morales, H. Müller, J. Hertzberg, AI in Current and Future Agriculture: An Introductory Overview, KI - Künstliche Intelligenz, 37 (2), 2023, pp. 117−132. doi:10.1007/s13218-023-00826-5. Search in Google Scholar

F. Assimakopoulos, C. Vassilakis, D. Margaris, K. Kotis, D. Spiliotopoulos, Artificial Intelligence Tools for the Agriculture Value Chain: Status and Prospects, Electronics, 13 (22), 2024, pp. 1−36. doi:10.3390/electronics13224362. Search in Google Scholar

O. B. Akintuyi, AI in Agriculture: A Comparative Review of Developments in the USA and Africa, Open Access Research Journal of Science and Technology, 10 (2), 2024, pp. 60–70. doi.org/10.53022/oarjst.2024.10.2.0051. Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Artificial Intelligence, Databases and Data Mining