1. bookVolume 12 (2022): Issue 3 (July 2022)
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English
Open Access

A Novel Approach to Type-Reduction and Design of Interval Type-2 Fuzzy Logic Systems

Published Online: 23 Jul 2022
Volume & Issue: Volume 12 (2022) - Issue 3 (July 2022)
Page range: 197 - 206
Received: 05 Jan 2022
Accepted: 24 Jun 2022
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

[1] Bilski, J., Kowalczyk, B., Marchlewska, A., and Zurada, J. (2020). Local Levenberg-Marquardt algorithm for learning feedforward neural networks. Journal of Artificial Intelligence and Soft Computing Research, 10(4):299–316. Search in Google Scholar

[2] Bilski, J., Kowalczyk, B., Marjański, A., Gandor, M., and Zurada, J. (2021). A novel fast feedfor-ward neural networks training algorithm. Journal of Artificial Intelligence and Soft Computing Research, 11(4):287–306. Search in Google Scholar

[3] Bilski, J. and Smoląg, J. (2020). Fast conjugate gradient algorithm for feedforward neural networks. In Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., and Zurada, J. M., editors, Artificial Intelligence and Soft Computing, pages 27–38, Cham. Springer International Publishing.10.1007/978-3-030-61401-0_3 Search in Google Scholar

[4] Chen, Y. and Wang, D. (2018). Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik–Mendel algorithms. Soft Computing, 22(4):1361–1380. Search in Google Scholar

[5] De Magistris, G., Russo, S., Roma, P., Starczewski, J. T., and Napoli, C. (2022). An explainable fake news detector based on named entity recognition and stance classification applied to covid-19. Information, 13(3):137. Search in Google Scholar

[6] El-Nagar, A. M. and El-Bardini, M. (2014). Simplified interval type-2 fuzzy logic system based on new type-reduction. Journal of Intelligent & Fuzzy Systems, 27(4):1999–2010. Search in Google Scholar

[7] Karnik, N. N., Mendel, J. M., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6):643–658. Search in Google Scholar

[8] Liang, Q. and Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8:535–550. Search in Google Scholar

[9] Maowen Nie and Woei Wan Tan (2008). Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pages 1425–1432. Search in Google Scholar

[10] Melgarejo, M. (2007). A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set. In Proc. NAFIPS 2007, pages 190–194.10.1109/NAFIPS.2007.383835 Search in Google Scholar

[11] Mendel, J. M. (2017). Uncertain rule-based fuzzy systems. Introduction and new directions, page 684.10.1007/978-3-319-51370-6 Search in Google Scholar

[12] Nowicki, R. K. and Starczewski, J. T. (2017). A new method for classification of imprecise data using fuzzy rough fuzzification. Inf. Sci., 414:33–52. Search in Google Scholar

[13] Nowicki, R. K., Starczewski, J. T., and Grycuk, R. (2019). Extended possibilistic fuzzification for classification. In Guervós, J. J. M., Garibaldi, J., Linares-Barranco, A., Madani, K., and Warwick, K., editors, Proceedings of the 11th International Joint Conference on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 343–350. ScitePress.10.5220/0008168303430350 Search in Google Scholar

[14] Rojas, J. D., Salazar, O., and Serrano, H. (2016). Nie-Tan Method and its Improved Version: A Counterexample. IngenierÃa, 21:138 – 153. Search in Google Scholar

[15] Sepulveda, R., Castillo, O., Melin, P., and Montiel, O. (2007). An efficient computational method to implement type-2 fuzzy logic in control applications. In Melin, P. and et al., editors, Analysis and Design of Intelligent Systems using Soft Computing Techniques, volume 41, chapter 5, pages 45–52. Springer-Verlag, Germany, 1 edition.10.1007/978-3-540-72432-2_6 Search in Google Scholar

[16] Starczewski, J. T. (2013). Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty, volume 284 of Studies in Fuzziness and Soft Computing. Springer. Search in Google Scholar

[17] Starczewski, J. T., Goetzen, P., and Napoli, C. (2020). Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems. Journal of Artificial Intelligence and Soft Computing Research, 10.10.2478/jaiscr-2020-0018 Search in Google Scholar

[18] Starczewski, J. T., Nowicki, R. K., and Nieszporek, K. (2019). Fuzzy-rough fuzzification in general FL classifiers. In Guervós, J. J. M., Garibaldi, J., Linares-Barranco, A., Madani, K., and Warwick, K., editors, Proceedings of the 11th International Joint Conference on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 335–342. ScitePress.10.5220/0008168103350342 Search in Google Scholar

[19] Staszewski, P., Jaworski, M., Rutkowski, L., and Tao, D. (2020). Explainable cluster-based rules generation for image retrieval and classification. In Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., and Zurada, J. M., editors, Artificial Intelligence and Soft Computing, pages 85–94, Cham. Springer International Publishing.10.1007/978-3-030-61534-5_8 Search in Google Scholar

[20] Wang, L. and Yen, J. (1999). Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and kalman filter. Fuzzy Sets and Systems, 101:353–362. Search in Google Scholar

[21] Wu, D. and Mendel, J. M. (2009). Enhanced karnik-mendel algorithms. IEEE Transactions on Fuzzy Systems, 17(4):923–934. Search in Google Scholar

[22] Wu, D. and Tan, W. (2005). Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller. In Proc. IEEE Fuzzy Conference, pages 353–358, Reno, NV. Search in Google Scholar

[23] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences, 8:199–249. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo