[[1] Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q. and Li, J.J., 2015, Distributed evolutionary algorithms and their models: A survey of the state-of-the-art, Applied Soft Computing, 34, pp. 286-300. DOI: 10.1016/j.asoc.2015.04.06110.1016/j.asoc.2015.04.061]Open DOISearch in Google Scholar

[[2] Zelinka, I., 2015, A survey on evolutionary algorithms dynamics and its complexity–Mutual relations, past, present and future, Swarm and Evolutionary Computation, 25, pp. 2-14. DOI: 10.1016/j.swevo.2015.06.00210.1016/j.swevo.2015.06.002]Open DOISearch in Google Scholar

[[3] Price, K., Storn, R.M. and Lampinen, J.A., 2006, Differential evolution: a practical approach to global optimization, Springer Science Business Media, ISBN: 978-3-540-20950-8]Search in Google Scholar

[[4] Storn, R. and Price, K., 1997, Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization, 11(4), pp. 341-359. DOI: 10.1023/A:100820282132810.1023/A:1008202821328]Open DOISearch in Google Scholar

[[5] Charles, A.J. and Parks, G.T., 2017, Mixed Oxide LWR Assembly Design Optimization Using Differential Evolution Algorithms, 2017 25th International Conference on Nuclear Engineering, Shanghai, China, 9, pp. V009T15A065. DOI: 10.1115/ICONE25-6793610.1115/ICONE25-67936]Open DOISearch in Google Scholar

[[6] Zaharie, D. and Petcu, D., 2005, Parallel implementation of multi-population differential evolution, Proc. of the NATO Advanced Research Workshop on Concurrent information processing and computing, Nicolau, A. and Grigoras, D., eds., Sinaia, Romania, pp. 223-232.]Search in Google Scholar

[[7] Ge, Y.F., Yu, W.J. and Zhang, J., 2016, Diversity-Based Multi-Population Differential Evolution for Large-Scale Optimization, Proc. of the 2016 on Genetic and Evolutionary Computation Conference Companion, Denver, Colorado, USA, pp. 31-32. DOI: 10.1145/2908961.290899510.1145/2908961.2908995]Open DOISearch in Google Scholar

[[8] Cheng, J., Zhang, G., Caraffini, F. and Neri, F., 2015, Multicriteria adaptive differential evolution for global numerical optimization, Integrated Computer-Aided Engineering, 22(2), pp. 103-107. DOI: 10.3233/ICA-15048110.3233/ICA-150481]Search in Google Scholar

[[9] Lobato, F.S., Steffen Jr, V. and Silva Neto, A.J., 2010, A comparative study of the application of differential evolution and simulated annealing in radiative transfer problems, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(SPE), pp. 518-526. DOI: 10.1590/S1678-5878201000050001210.1590/S1678-58782010000500012]Open DOISearch in Google Scholar

[[10] Hartfield, R.J., Jenkins, R.M. and Burkhalter, J.E., 2007, Ramjet powered missile design using a genetic algorithm, Journal of Computing and Information Science in Engineering, 7(2), pp. 167-173. DOI: 0.1115/1.273872210.1115/1.2738722]Search in Google Scholar

[[11] Penas, D.R., Banga, J.R., González, P. and Doallo, R., 2015, Enhanced parallel differential evolution algorithm for problems in computational systems biology, Applied Soft Computing, 33, pp. 86-99. DOI: 10.1016/j.asoc.2015.04.02510.1016/j.asoc.2015.04.025]Open DOISearch in Google Scholar

[[12] González-Álvarez, D.L., Vega-Rodríguez, M.A. and Rubio-Largo, Á., 2014, Parallelizing and optimizing a hybrid differential evolution with Pareto tournaments for discovering motifs in DNA sequences, The Journal of Supercomputing, 70(2), pp. 880-905. DOI: 10.1007/s11227-014-1266-y10.1007/s11227-014-1266-y]Open DOISearch in Google Scholar

[[13] Kozlov, K. and Samsonov, A., 2011, DEEP—differential evolution entirely parallel method for gene regulatory networks, The Journal of Supercomputing, 57(2), pp. 172-178. DOI: 10.1007/s11227-010-0390-610.1007/s11227-010-0390-6325051822223930]Open DOISearch in Google Scholar

[[14] Maciejewski, Ł., 2007, Application of differential evolution algorithm for identification of experimantal data, Archive of Mechanical Engineering, 54(4), pp. 327-337.]Search in Google Scholar

[[15] Nayak, N., Routray, S.K. and Rout, P.K., 2016, Design of Takagi-Sugeno fuzzy controller for VSCHVDC parallel AC transmission system using differential evolution algorithm, International Journal of Computer Aided Engineering and Technology, 8(3), pp. 277-294. DOI: 10.1504/IJCAET.2016.07760510.1504/IJCAET.2016.077605]Open DOISearch in Google Scholar

[[16] Mokhtari, H. and Salmasnia, A., 2015, A Monte Carlo simulation based chaotic differential evolution algorithm for scheduling a stochastic parallel processor system, Expert Systems with Applications, 42(20), pp. 7132-7147. DOI: 10.1016/j.eswa.2015.05.01510.1016/j.eswa.2015.05.015]Open DOISearch in Google Scholar

[[17] Acebrón, J.A. and Spigler, R., 2007, Supercomputing applications to the numerical modeling of industrial and applied mathematics problems, The Journal of Supercomputing, 40(1), pp. 67-80. DOI: 10.1007/s11227-006-0014-310.1007/s11227-006-0014-3]Open DOISearch in Google Scholar

[[18] Tardivo, M.L., Caymes-Scutari, P., Mendez-Garabetti, M. and Bianchini, G., 2013, Two models for parallel differential evolution, Proc. of HPCLatAm, C. Garcia Garino and M. Printista, eds., Mendoza, Argentina, pp. 25-36.]Search in Google Scholar

[[19] Ntipteni, M.S., Valakos, I.M. and Nikolos, I.K., 2006, An asynchronous parallel differential evolution algorithm, Proc. of the ERCOFTAC conference on design optimisation: methods and application.]Search in Google Scholar

[[20] Fateh, M.F., Zameer, A., Mirza, N.M., Mirza, S.M. and Raja, M.A.Z., 2017, Biologically inspired computing framework for solving two-point boundary value problems using differential evolution, Neural Computing and Applications, 28(8), pp. 2165-2179. DOI: 10.1007/s00521-016-2185-z10.1007/s00521-016-2185-z]Search in Google Scholar

[[21] Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P. and Vrahatis, M.N., 2004, Parallel differential evolution, Proc. of the 2004 Congress on Evolutionary Computation, Portland, Oregon, USA, pp. 2023-2029. DOI: 10.1109/CEC.2004.133114510.1109/CEC.2004.1331145]Open DOISearch in Google Scholar

[[22] Abo-Hammour, Z.S., Yusuf, M., Mirza, N.M., Mirza, S.M., Arif, M. and Khurshid, J., 2004, Numerical solution of second-order, two-point boundary value problems using continuous genetic algorithms, International Journal for Numerical Methods in Engineering, 61(8), pp. 1219-1242. DOI: 10.1002/nme.110810.1002/nme.1108]Search in Google Scholar

[[23] Tat, C.K., Majid, Z.A., Suleiman, M. and Senu, N., 2012, Solving Linear Two-Point Boundary Value, Applied Mathematical Sciences, 6(99), pp. 4921-4929.]Search in Google Scholar

[[24] Zurita, N.F.S., Colby, M.K., Tumer, I.Y., Hoyle, C. and Tumer, K., 2018, Design of Complex Engineered Systems Using Multi-Agent Coordination, Journal of Computing and Information Science in Engineering, 18(1), pp. 011003. DOI: 10.1115/1.403815810.1115/1.4038158]Open DOISearch in Google Scholar