Open Access

Permeation and Fiber Matrix Bond Behaviour of Ultra High Performance Concrete – A Review


Cite

Abbas, M. Y., & Khan, M. I. (2016). Fiber-Matrix Interfacial Behavior of Hooked-End Steel Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 28(11), 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0001626.10.1061/(ASCE)MT.1943-5533.0001626 Search in Google Scholar

Abbas, S., Soliman, A. M., & Nehdi, M. L. (2015). Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Construction and Building Materials, 75, 429–441. https://doi.org/10.1016/j.conbuildmat.2014.11.017.10.1016/j.conbuildmat.2014.11.017 Search in Google Scholar

Abbas, S., Soliman, A., Nehdi, M., Bai, J., Wild, S., Sabir, B. B., Tasdemir, C., Li, Z., Zhang, H., Wang, R., Office, J., Commissioner, A., Chen, Y., Matalkah, F., Yu, Y., Rankothge, W., Balachandra, A., Soroushian, P., Herald Lessly, S., … Wang, H. H. (2017). Influence of steel fiber distribution on splitting damage and transport properties of ultra-high performance concrete. Construction and Building Materials, 45(10), 104373. https://doi.org/10.1016/j.cemconcomp.2021.104373.10.1016/j.cemconcomp.2021.104373 Search in Google Scholar

Abbas, Y. M., & Iqbal Khan, M. (2016). Fiber–Matrix Interactions in Fiber-Reinforced Concrete: A Review. Arabian Journal for Science and Engineering, 41(4), 1183–1198. https://doi.org/10.1007/s13369-016-2099-1.10.1007/s13369-016-2099-1 Search in Google Scholar

Abdallah, S., Fan, M., & Rees, D. W. A. (2018). Bonding Mechanisms and Strength of Steel Fiber–Reinforced Cementitious Composites: Overview. Journal of Materials in Civil Engineering, 30(3), 04018001. https://doi.org/10.1061/(asce)mt.1943-5533.0002154.10.1061/(ASCE)MT.1943-5533.0002154 Search in Google Scholar

Abu-Lebdeh, T., Hamoush, S., Heard, W., & Zornig, B. (2011). Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Construction and Building Materials, 25(1), 39–46. https://doi.org/10.1016/j.conbuildmat.2010.06.059.10.1016/j.conbuildmat.2010.06.059 Search in Google Scholar

ACI 239. (2012). Committee in ultra-high performance concrete. ACI Annual Conference 2012, Toronto, ON, Canada; 2012. Search in Google Scholar

Akca, A. H., & Özyurt, N. (2018). Effects of re-curing on residual mechanical properties of concrete after high temperature exposure. Construction and Building Materials, 159, 540–552. https://doi.org/10.1016/j.conbuildmat.2017.11.005.10.1016/j.conbuildmat.2017.11.005 Search in Google Scholar

Aldahdooh, M. A. A., Muhamad Bunnori, N., & Megat Johari, M. A. (2013). Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash. Construction and Building Materials, 48, 379–389. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2013.07.007.10.1016/j.conbuildmat.2013.07.007 Search in Google Scholar

Alkaysi, M., El-Tawil, S., Liu, Z., & Hansen, W. (2016). Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC). Cement and Concrete Composites, 66, 47–56. https://doi.org/10.1016/j.cemconcomp.2015.11.005.10.1016/j.cemconcomp.2015.11.005 Search in Google Scholar

Amriou, A., & Bencheikh, M. (2017). New experimental method for evaluating the water permeability of concrete by a lateral flow procedure on a hollow cylindrical test piece. Construction and Building Materials, 151, 642–649. https://doi.org/10.1016/j.conbuildmat.2017.06.126.10.1016/j.conbuildmat.2017.06.126 Search in Google Scholar

Armelin, H. S., & Banthia, N. (1997). Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Materials Journal, 94(1), 18–31. https://doi.org/10.14359/281.10.14359/281 Search in Google Scholar

Arora, A., Aguayo, M., Hansen, H., Castro, C., Federspiel, E., Mobasher, B., & Neithalath, N. (2018). Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC). Cement and Concrete Research, 103, 179–190. https://doi.org/10.1016/j.cemconres.2017.10.013.10.1016/j.cemconres.2017.10.013 Search in Google Scholar

Association Française de Génie Civil (AFGC). (2002). Service d’études techniques des routes et autoroutes Association Française de Génie Civil. Recommandations Provisoires, Janvier, France, 2002. Search in Google Scholar

ASTM C 109/C 109M-21. (2021). Standard test method for compressive strength of hydraulic cement mortars. Annual Book of ASTM Standards, 04, 9. https://www.astm.org/c0109_c0109m-21.html. Search in Google Scholar

ASTM C1202. (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials., C, 1–8. https://doi.org/10.1520/C1202-12.2. Search in Google Scholar

ASTM C1856 / C1856M-17. (2017). Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete. In ASTM International, West Conshohocken, PA. Search in Google Scholar

ASTM C989. (2005). Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. ASTM International, i(February), 2–6. www.astm.org. Search in Google Scholar

Bache, H. (1981). Densified Cements Ultra-Fine Particle-Based Materials. Proceedings of the 2nd International Conference on Super Plasticizers in Concrete. Search in Google Scholar

Bangi, M. R., & Horiguchi, T. (2011). Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 41(11), 1150–1156. https://doi.org/10.1016/j.cemconres.2011.07.001.10.1016/j.cemconres.2011.07.001 Search in Google Scholar

Bangi, M. R., & Horiguchi, T. (2012). Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 42(2), 459–466. https://doi.org/10.1016/j.cemconres.2011.11.014.10.1016/j.cemconres.2011.11.014 Search in Google Scholar

Banthia, N., & Sappakittipakorn, M. (2007). Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research, 37(9), 1366–1372. https://doi.org/10.1016/j.cemconres.2007.05.005.10.1016/j.cemconres.2007.05.005 Search in Google Scholar

Banthia, N., & Trottier, J. F. (1991). Deformed steel fiber-cementitious matrix bond under impact. Cement and Concrete Research, 21(1), 158–168. https://doi.org/10.1016/0008-8846(91)90042-G.10.1016/0008-8846(91)90042-G Search in Google Scholar

Bartos, P. (1981). Review paper: Bond in fibre reinforced cements and concretes. International Journal of Cement Composites and Lightweight Concrete, 3(3), 159–177. https://doi.org/10.1016/0262-5075(81)90049-X.10.1016/0262-5075(81)90049-X Search in Google Scholar

Basheer, P. A. M. (2002). Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. 24, 437–449.10.1016/S0958-9465(01)00075-0 Search in Google Scholar

Beglarigale, A., & Yazici, H. (2015). Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar. Construction and Building Materials, 75, 255–265. https://doi.org/10.1016/j.conbuildmat.2014.11.037.10.1016/j.conbuildmat.2014.11.037 Search in Google Scholar

Benjamin A., G. (2006). Material Property Characterization of Ultra-High Performance Concrete. Fhwa, FHWA-HRT-06-103, 186. Search in Google Scholar

Biswas, R., & Rai, B. (2020). Effect of cementing efficiency factor on the mechanical properties of concrete incorporating silica fume. Journal of Structural Integrity and Maintenance, 5(3), 190–203. https://doi.org/10.1080/24705314.2020.1765269.10.1080/24705314.2020.1765269 Search in Google Scholar

Biswas, R., Rai, B., & Samui, P. (2021). Compressive strength prediction model of high-strength concrete with silica fume by destructive and non-destructive technique. Innovative Infrastructure Solutions, 6(2), 41062. https://doi.org/10.1007/s41062-020-00447-z.10.1007/s41062-020-00447-z Search in Google Scholar

Blais, P. Y., & Couture, M. (1999). Precast, Prestressed Pedestrian Bridge — World’s First Reactive. PCI Journal, 44(5), 60–71.10.15554/pcij.09011999.60.71 Search in Google Scholar

Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549.10.1016/j.cscm.2021.e00549 Search in Google Scholar

Bošnjak, J., Ožbolt, J., & Hahn, R. (2013). Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup. Cement and Concrete Research, 53, 104–111. https://doi.org/10.1016/j.cemconres.2013.06.005.10.1016/j.cemconres.2013.06.005 Search in Google Scholar

Brouwers, H. J. H., & Radix, H. J. (2005). Self-compacting concrete: Theoretical and experimental study. Cement and Concrete Research, 35(11), 2116–2136. https://doi.org/10.1016/j.cemconres.2005.06.002.10.1016/j.cemconres.2005.06.002 Search in Google Scholar

Çakır, Ö., & Aköz, F. (2008). Effect of curing conditions on the mortars with and without GGBFS. Construction and Building Materials, 22(3), 308–314. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2006.08.013.10.1016/j.conbuildmat.2006.08.013 Search in Google Scholar

Chan, Y. W., & Chu, S. H. (2004). Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research, 34(7), 1167–1172. https://doi.org/10.1016/j.cemconres.2003.12.023.10.1016/j.cemconres.2003.12.023 Search in Google Scholar

Chan, Y. W., & Li, V. C. (1997). Effects of transition zone densification on fiber/cement paste bond strength improvement. Advanced Cement Based Materials, 5(1), 8–17. https://doi.org/10.1016/S1065-7355(97)90010-9.10.1016/S1065-7355(97)90010-9 Search in Google Scholar

Chanvillard, G., & Aïtcin, P.-C. (1996). Pull-out behavior of corrugated steel fibers. Advanced Cement Based Materials, 4(1), 28–41. https://doi.org/10.1016/s1065-7355(96)90060-7.10.1016/S1065-7355(96)90060-7 Search in Google Scholar

Cheng, A., Huang, R., Wu, J. K., & Chen, C. H. (2005). Influence of GGBS on durability and corrosion behavior of reinforced concrete. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2005.03.043.10.1016/j.matchemphys.2005.03.043 Search in Google Scholar

Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H., & Wu, X. (2018). Compressive strength prediction of recycled concrete based on deep learning. Construction and Building Materials, 175, 562–569. https://doi.org/10.1016/J.CONBUILDMAT.2018.04.169.10.1016/j.conbuildmat.2018.04.169 Search in Google Scholar

Diamond, S., & Sahu, S. (2006). Densified silica fume: Particle sizes and dispersion in concrete. Materials and Structures/Materiaux et Constructions, 39(9), 849–859. https://doi.org/10.1617/s11527-006-9087-y.10.1617/s11527-006-9087-y Search in Google Scholar

Ding, Y., Zhang, C., Cao, M., Zhang, Y., & Azevedo, C. (2016). Influence of different fibers on the change of pore pressure of self-consolidating concrete exposed to fire. Construction and Building Materials, 113, 456–469. https://doi.org/10.1016/j.conbuildmat.2016.03.070.10.1016/j.conbuildmat.2016.03.070 Search in Google Scholar

Dowd, W. M., & Dauriac, C. E. (1998). Reactive powder concrete. Construction Specifier, 51(12), 47–52. Search in Google Scholar

El-Dieb, A. S. (2009). Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers. Materials and Design, 30(10), 4286–4292. https://doi.org/10.1016/j.matdes.2009.04.024.10.1016/j.matdes.2009.04.024 Search in Google Scholar

El-Helou RG, M. C. and C. G. (2014). Ultra-High Performance Fiber-Reinforced Concrete: Extensive Material Characterization, Model Validation, and Structural Simulations. Presentation at ACI Fall 2014 Convention, Washington, DC. Search in Google Scholar

Elchalakani, M., Aly, T., & Abu-Aisheh, E. (2014). Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 1, 10–24. https://doi.org/10.1016/j.cscm.2013.11.001.10.1016/j.cscm.2013.11.001 Search in Google Scholar

EN 14889-2. (2004). Fibres for concrete Part 2: Polymer fibres - Definition, specification and conformity. Search in Google Scholar

Fehling, E., Schmidt, M., & Stuerwald, S. (2008). Second International Symposium on Ultra High Performance Concrete. Second International Symposium on Ultra High Performance Concrete, 902. Search in Google Scholar

Felekoǧlu, B., Türkel, S., & Baradan, B. (2007). Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4), 1795–1802. https://doi.org/10.1016/j.buildenv.2006.01.012.10.1016/j.buildenv.2006.01.012 Search in Google Scholar

Feng, J., Sun, W. W., Wang, X. M., & Shi, X. Y. (2014). Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete. Construction and Building Materials, 69, 403–410. https://doi.org/10.1016/j.conbuildmat.2014.07.049.10.1016/j.conbuildmat.2014.07.049 Search in Google Scholar

Feret, R. (1892). On the compactness of hydraulic mortars. Memoirs and documents relating to the art of constructions at the service of the engineer. Annales Des Ponts and Chaussées, 2nd semest, 5–161. Search in Google Scholar

Ganesh, B. K., & Sree, R. K. V. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research, 30(7), 1031–1036.10.1016/S0008-8846(00)00271-4 Search in Google Scholar

Ganesh, P., & Murthy, A. R. (2019). Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. Construction and Building Materials, 197, 667–680. https://doi.org/10.1016/j.conbuildmat.2018.11.240.10.1016/j.conbuildmat.2018.11.240 Search in Google Scholar

Ghafari, E., Costa, H., Julio, E., Portugal, A., & Duraes, L. (2012). Optimization of UHPC by adding nanomaterials. In Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, Germany, 71–78. Search in Google Scholar

Ghafari, E., Costa, H., Júlio, E., Portugal, A., & Durães, L. (2014). The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials and Design, 59(January), 1–9. https://doi.org/10.1016/j.matdes.2014.02.051.10.1016/j.matdes.2014.02.051 Search in Google Scholar

Gholampour, A., & Ozbakkaloglu, T. (2017). Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. Journal of Cleaner Production, 162, 1407–1417. https://doi.org/10.1016/j.jclepro.2017.06.087.10.1016/j.jclepro.2017.06.087 Search in Google Scholar

Granger, S., Loukili, A., Pijaudier-Cabot, G., & Chanvillard, G. (2007). Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cement and Concrete Research, 37(4), 519–527. https://doi.org/10.1016/j.cemconres.2006.12.005.10.1016/j.cemconres.2006.12.005 Search in Google Scholar

Gray, R. J. (1983). Experimental techniques for measuring fibre/matrix interfacial bond shear strength. International Journal of Adhesion and Adhesives, 3(4), 197–202. https://doi.org/10.1016/0143-7496(83)90094-5.10.1016/0143-7496(83)90094-5 Search in Google Scholar

Gray, R. J., & Johnston, C. D. (1987). The influence of fibre-matrix interfacial bond strength on the mechanical properties of steel fibre reinforced mortars. International Journal of Cement Composites and Lightweight Concrete, 9(1), 43–55. https://doi.org/10.1016/0262-5075(87)90036-4.10.1016/0262-5075(87)90036-4 Search in Google Scholar

Graybeal B.A. (2006). Material Property Characterization of Ultra-High Performance Concrete. Fhwa, August. Search in Google Scholar

Graybeal, B. A., & Russel, H. G. (2013). Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community. Publication No. FHWA-HRT-13-060. June, 176. Search in Google Scholar

Han, S. H., Oh, H. J., & Kim, S. S. (2014). Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites. Composites Part B: Engineering, 60, 98–105. https://doi.org/10.1016/j.compositesb.2013.12.069.10.1016/j.compositesb.2013.12.069 Search in Google Scholar

Harish, K. V., Dattatreya, J. K., & Neelamegam, M. (2013). Experimental investigation and analytical modeling of the σ-ε Characteristics in compression of heat-treated ultra-high strength mortars produced from conventional materials. Construction and Building Materials, 49, 781–796. https://doi.org/10.1016/j.conbuildmat.2013.08.068.10.1016/j.conbuildmat.2013.08.068 Search in Google Scholar

Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete(UHPFRC). Construction and Building Materials, 37, 874–882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.10.1016/j.conbuildmat.2012.04.030 Search in Google Scholar

Heinz, D., & Ludwig, H.-M. (2004). Heat Treatment and the Risk of DEF Delayed Ettringite Formation in UHPC. International Symposium on Ultra High Performance Concrete, 717–730. Search in Google Scholar

Herold, G., & Muller, H. (2004). Measurement of porosity of ultra-high strength fibre reinforced concrete. In Proceedings of the International Symposium on Ultra-High Performance Concrete, 685–694. Search in Google Scholar

Hoang, A. Le, & Fehling, E. (2017). Numerical analysis of circular steel tube confined UHPC stub columns. Computers and Concrete, 19(3), 263–273. https://doi.org/10.12989/cac.2017.19.3.263.10.12989/cac.2017.19.3.263 Search in Google Scholar

Huang, C.-H., Wu, C.-H., Lin, S.-K., & Yen, T. (2019). Effect of Slag Particle Size on Fracture Toughness of Concrete. Applied Sciences, 9(4). https://doi.org/10.3390/app9040805.10.3390/app9040805 Search in Google Scholar

Huang, W., Kazemi-Kamyab, H., Sun, W., & Scrivener, K. (2017). Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Materials & Design, 121, 36–46. https://doi.org/https://doi.org/10.1016/j.matdes.2017.02.052.10.1016/j.matdes.2017.02.052 Search in Google Scholar

Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 57, 8–16, https://doi.org/https://doi.org/10.1016/j.cemconcomp.2014.10.007.10.1016/j.cemconcomp.2014.10.007 Search in Google Scholar

Kanda, T., & Li, V. C. (1998). Interface Property and Apparent Strength of High-Strength Hydrophilic Fiber in Cement Matrix. Journal of Materials in Civil Engineering, 10(1), 5–13. https://doi.org/10.1061/(asce)0899-1561(1998)10:1(5).10.1061/(ASCE)0899-1561(1998)10:1(5) Search in Google Scholar

Kang, S. T., & Kim, J. K. (2011). The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC). Cement and Concrete Research, 41(10), 1001–1014. https://doi.org/10.1016/j.cemconres.2011.05.009.10.1016/j.cemconres.2011.05.009 Search in Google Scholar

Khan, S. M., & Ahmad, J. (2018). Mechanical Properties of Steel Fiber Reinforced Self-Compacting Concrete : A Review. Search in Google Scholar

Kim, J. H. J., Park, C. G., Lee, S. W., Lee, S. W., & Won, J. P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites Part B: Engineering, 39(3), 442–450. https://doi.org/10.1016/j.compositesb.2007.05.001.10.1016/j.compositesb.2007.05.001 Search in Google Scholar

Koukolík, P., Vítek, J. L., Brož, R., Coufal, R., Kalný, M., Komanec, J., & Kvasnička, V. (2015). Construction of the First Footbridge Made of UHPC in the Czech Republic. Advanced Materials Research, 1106, 8–13. https://doi.org/10.4028/www.scientific.net/amr.1106.8.10.4028/www.scientific.net/AMR.1106.8 Search in Google Scholar

Kumar, A., Bishnoi, S., & Scrivener, K. L. (2012). Modelling early age hydration kinetics of alite. Cement and Concrete Research, 42(7), 903–918. https://doi.org/10.1016/j.cemconres.2012.03.003.10.1016/j.cemconres.2012.03.003 Search in Google Scholar

Kumar, S., & Rai, B. (2021). Durability performance and microstructure of binary blended high-performance concrete. Innovative Infrastructure Solutions, 6(3), 152. https://doi.org/10.1007/s41062-021-00525-w.10.1007/s41062-021-00525-w Search in Google Scholar

Lavanya Prabha, S. (2010). Study on Stress-Strain Properties of Reactive Powder Concrete Under Uniaxial Compression. International Journal of Engineering Science and Technology, 2(11), 6408–6416. Search in Google Scholar

Le Hoang, A., & Fehling, E. (2017). Analysis of circular steel tube confined UHPC stub columns. Steel and Composite Structures, 23(6), 669–682. https://doi.org/10.12989/scs.2017.23.6.669. Search in Google Scholar

Lee, G., Han, D., Han, M. C., Han, C. G., & Son, H. J. (2012). Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete. Construction and Building Materials, 34, 313–320. https://doi.org/10.1016/j.conbuildmat.2012.02.015.10.1016/j.conbuildmat.2012.02.015 Search in Google Scholar

Lei Voo, Y., & Foster, S. J. (2010). Characteristics of ultra-high performance “ductile” concrete and its impact on sustainable construction. IES Journal Part A: Civil and Structural Engineering, 3(3), 168–187. https://doi.org/10.1080/19373260.2010.492588.10.1080/19373260.2010.492588 Search in Google Scholar

Li, B., Chi, Y., Xu, L., Shi, Y., & Li, C. (2018). Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Construction and Building Materials, 191, 80–94. https://doi.org/10.1016/j.conbuildmat.2018.09.202.10.1016/j.conbuildmat.2018.09.202 Search in Google Scholar

Li, M., & Li, V. C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Materials and Structures/Materiaux et Constructions, 46(3), 405–420. https://doi.org/10.1617/s11527-012-9909-z.10.1617/s11527-012-9909-z Search in Google Scholar

Li, V. (1997). Interface Property Characterization and Strengthening Mechanisms in Fiber Reinforced Cement Based Composites. Advanced Cement Based Materials, 6(1), 1–20. https://doi.org/10.1016/s1065-7355(97)00004-7.10.1016/S1065-7355(97)00004-7 Search in Google Scholar

Li, W., Huang, Z., Cao, F., Sun, Z., & Shah, S. P. (2015). Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Construction and Building Materials, 95, 366–374. https://doi.org/10.1016/j.conbuildmat.2015.05.137.10.1016/j.conbuildmat.2015.05.137 Search in Google Scholar

Liu, J. C., & Tan, K. H. (2018). Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature. Cement and Concrete Composites, 93, 235–245. https://doi.org/10.1016/j.cemconcomp.2018.07.015.10.1016/j.cemconcomp.2018.07.015 Search in Google Scholar

Liu, J., Tang, K., Qiu, Q., Pan, D., Lei, Z., & Xing, F. (2014). Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. In Materials (Vol. 6, Issue 9, pp. 6646–6659). https://doi.org/10.3390/ma7096646.10.3390/ma7096646545614028788204 Search in Google Scholar

Liu, X., Ye, G., De Schutter, G., Yuan, Y., & Taerwe, L. (2008). On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cement and Concrete Research, 38(4), 487–499. https://doi.org/10.1016/j.cemconres.2007.11.010.10.1016/j.cemconres.2007.11.010 Search in Google Scholar

Lowke, D., Stengel, T., Schießl, P., & Gehlen, C. (2012). Control of Rheology, Strength and Fibre Bond of UHPC with Additions–Effect of Packing Density and Addition Type. Hipermat, 215. Search in Google Scholar

Mandel, J. A., Wei, S., & Said, S. (1987). Studies of the Properties of the Fiber-Matrix Interface in Steel Fiber Reinforced Mortar. ACI Materials Journal, 84(2), 101–109. https://doi.org/10.14359/1815.10.14359/1815 Search in Google Scholar

Markovic, I. (2006). High-performance hybrid-fibre concrete: development and utilization. Technische Universiteit Delft, The Netherlands. Search in Google Scholar

Martys, N. S., & Ferraris, C. F. (1997). Capillary transport in mortars and concrete. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(97)00052-5.10.1016/S0008-8846(97)00052-5 Search in Google Scholar

Mazzucco, G., Majorana, C. E., & Salomoni, V. A. (2015). Numerical simulation of polypropylene fibres in concrete materials under fire conditions. Computers and Structures, 154, 17–28. https://doi.org/10.1016/j.compstruc.2015.03.012.10.1016/j.compstruc.2015.03.012 Search in Google Scholar

Medina, N. F., Medina, D. F., Hernández-Olivares, F., & Navacerrada, M. A. (2017). Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Construction and Building Materials, 144, 563–573. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.03.196.10.1016/j.conbuildmat.2017.03.196 Search in Google Scholar

Mehta, P. K. (1983). Pozzolanic and Cementitious Byproducts As Mineral Admixtures for Concrete - a Critical Review. Publication SP - American Concrete Institute, 1, 1–46. Search in Google Scholar

Metin, I., Kemalettin, Y., Mansur, S., & Mehmet, S. (2011). Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase. Construction and Building Materials, 25(1), 61–68.10.1016/j.conbuildmat.2010.06.056 Search in Google Scholar

Missemer, L., Ouedraogo, E., Malecot, Y., Clergue, C., & Rogat, D. (2019). Fire spalling of ultra-high performance concrete: From a global analysis to microstructure investigations. Cement and Concrete Research, 115, 207–219. https://doi.org/10.1016/j.cemconres.2018.10.005.10.1016/j.cemconres.2018.10.005 Search in Google Scholar

Naaman, A. E. (2003). Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, 1(3), 241–252. https://doi.org/10.3151/jact.1.241.10.3151/jact.1.241 Search in Google Scholar

Naaman, A. E., Namur, G. G., Alwan, J. M., & Najm, H. S. (1991). Fiber Pullout and Bond Slip. I: Analytical Study. Journal of Structural Engineering, 117(9), 2769–2790. https://doi.org/10.1061/(asce)0733-9445(1991)117:9(2769).10.1061/(ASCE)0733-9445(1991)117:9(2769) Search in Google Scholar

Naik, D. L., Sharma, A., Chada, R. R., Kiran, R., & Sirotiak, T. (2019). Modified pullout test for indirect characterization of natural fiber and cementitious matrix interface properties. Construction and Building Materials, 208, 381–393. https://doi.org/10.1016/j.conbuildmat.2019.03.021.10.1016/j.conbuildmat.2019.03.021 Search in Google Scholar

Nammur, G., & Naaman, A. E. (1989). Bond stress model for fiber reinforced concrete based on bond stress-slip relationship. ACI Materials Journal, 86(1), 45–57. https://doi.org/10.14359/1845.10.14359/1845 Search in Google Scholar

National, G., & Pillars, H. (2005). CHARACTERIZATION OF THE BEHAVIOR OF ULTRA-HIGH PERFORMANCE CONCRETE Benjamin. Search in Google Scholar

Neville, A., & Aïtcin, P. C. (1998). High performance concrete - An overview. Materials and Structures/Materiaux et Constructions, 31(2), 111–117. https://doi.org/10.1007/bf02486473.10.1007/BF02486473 Search in Google Scholar

Nguyen, K., Freytag, B., Ralbovsky, M., & Rio, O. (2015). Assessment of serviceability limit state of vibrations in the UHPFRC-Wild bridge through an updated FEM using vehicle-bridge interaction. Computers and Structures, 156, 29–41. https://doi.org/10.1016/j.compstruc.2015.04.001.10.1016/j.compstruc.2015.04.001 Search in Google Scholar

O’Neil, E. F., Neeley, B. D., & Cargile, J. D. (2001). Tensile properties of very high-strength Concrete for penetration Resistant structures. Shock and Vibration. Search in Google Scholar

Odler, I., & Rößler, M. (1985). Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cement and Concrete Research, 15(3), 401–410. https://doi.org/https://doi.org/10.1016/0008-8846(85)90113-9.10.1016/0008-8846(85)90113-9 Search in Google Scholar

Oh, B. H., Park, D. G., Kim, J. C., & Choi, Y. C. (2005). Experimental and theoretical investigation on the postcracking inelastic behavior of synthetic fiber reinforced concrete beams. Cement and Concrete Research, 35(2), 384–392. https://doi.org/10.1016/j.cemconres.2004.07.019.10.1016/j.cemconres.2004.07.019 Search in Google Scholar

Orange, G., Dugat, J., & Acker, P. (1999). A new generation of UHP concrete: Ductal®. Damage resistance and micromechanical analysis. Proc. of the 3d Int. RILEM Workshop, 101–111. https://books.google.fr/books?id=LSlfn0kI0u0C&pg=PA101&lpg=PA101&dq=A+new+generation+of+UHP+concrete:+Ductal®&source=bl&ots=uXqiFGUMbn&sig=ACfU3U2Ff24mUDOA9YaCgzvZpY4nwmHEJg&hl=en&sa=X&ved=2ahUKEwiSISkxqboAhUkz4UKHcVkCDMQ6AEwBHoECAsQAQ#v=onepage&q=A new. Search in Google Scholar

Ozawa, M., Subedi Parajuli, S., Uchida, Y., & Zhou, B. (2019). Preventive effects of polypropylene and jute fibers on spalling of UHPC at high temperatures in combination with waste porous ceramic fine aggregate as an internal curing material. Construction and Building Materials, 206, 219–225. https://doi.org/10.1016/j.conbuildmat.2019.02.056.10.1016/j.conbuildmat.2019.02.056 Search in Google Scholar

Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties – A review. Construction and Building Materials, 105, 423–434. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.12.153.10.1016/j.conbuildmat.2015.12.153 Search in Google Scholar

Ozyildirim, C. (2011). Evaluation of Fiber-Reinforced Concrete. Evaluation of Fiber-Reinforced Concrete. Search in Google Scholar

Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0.10.1016/S0008-8846(03)00062-0 Search in Google Scholar

Piérard, J., Donms, B., & Cauberg, N. (2012). Evaluation of durability parameters of UHPC using accelerated lab tests. Proceedings of Hipermat 2012 3rd International Symposium On UHPC and Nanotechnology For High Performance Construction Materials, 371–376. Search in Google Scholar

Rai, B., & Singh, N. K. (2021). Statistical and experimental study to evaluate the variability and reliability of impact strength of steel-polypropylene hybrid fiber reinforced concrete. Journal of Building Engineering, 44(July), 102937. https://doi.org/10.1016/j.jobe.2021.102937.10.1016/j.jobe.2021.102937 Search in Google Scholar

Rao, G. A. (2003). Investigations on the performance of silica fume-incorporated cement pastes and mortars. Cement and Concrete Research, 33(11), 1765–1770. https://doi.org/https://doi.org/10.1016/S0008-8846(03)00171-6.10.1016/S0008-8846(03)00171-6 Search in Google Scholar

Rashad, A. M., & Sadek, D. M. (2017). An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures. International Journal of Sustainable Built Environment, 6(1), 91–101. https://doi.org/https://doi.org/10.1016/j.ijsbe.2016.10.002.10.1016/j.ijsbe.2016.10.002 Search in Google Scholar

Rebentrost M., W. G. (2008). Experience and applications of ultra-high performance concrete in Asia. Proceedings of the Second International Symposium on Ultra High Performance Concrete, 11. Search in Google Scholar

Reda, M. M., Shrive, N. G., & Gillott, J. E. (1999). Microstructural investigation of innovative UHPC. Cement and Concrete Research, 29(3), 323–329. https://doi.org/10.1016/S0008-8846(98)00225-7.10.1016/S0008-8846(98)00225-7 Search in Google Scholar

Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501–1511. https://doi.org/https://doi.org/10.1016/0008-8846(95)00144-2.10.1016/0008-8846(95)00144-2 Search in Google Scholar

Ríos, J. D., Cifuentes, H., Leiva, C., García, C., & Alba, M. D. (2018). Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures. Journal of Materials in Civil Engineering, 30(11), 04018271. https://doi.org/10.1061/(asce)mt.1943-5533.0002491.10.1061/(ASCE)MT.1943-5533.0002491 Search in Google Scholar

Ríos, J. D., Cifuentes, H., Leiva, C., & Seitl, S. (2019). Analysis of the mechanical and fracture behavior of heated ultra-high-performance fiber-reinforced concrete by X-ray computed tomography. Cement and Concrete Research, 119, 77–88. https://doi.org/10.1016/j.cemconres.2019.02.015.10.1016/j.cemconres.2019.02.015 Search in Google Scholar

Ríos, J. D., Cifuentes, H., Yu, R. C., & Ruiz, G. (2017). Probabilistic flexural fatigue in plain and fiber-reinforced concrete. Materials, 10(7). https://doi.org/10.3390/ma10070767.10.3390/ma10070767555181028773123 Search in Google Scholar

Rößler, M., & Odler, I. (1985). Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cement and Concrete Research, 15(2), 320–330. https://doi.org/10.1016/0008-8846(85)90044-4.10.1016/0008-8846(85)90044-4 Search in Google Scholar

ROUGEAU, P., & B.B. (2004). Ultra-high-performance concrete with ultrafine particles other than silica fume. In Proceedings of the fib Symposium 2004 - Concrete Structures: The Challenge of Creativity (Issue 3). Search in Google Scholar

Rougeau, P., & Borys, B. (2004). Ultra high performance concrete with ultrafine particles other than silica fume. Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 213-226. Search in Google Scholar

Roy, D. M., & Idorn, G. M. (1982). Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete. J Am Concr Inst, V 79(N 6), 444–457. https://doi.org/10.14359/10919.10.14359/10919 Search in Google Scholar

Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., & Vieira, L. E. A. (2012). Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model Development, 5(1), 185–191. https://doi.org/10.5194/gmd-5-185-2012.10.5194/gmd-5-185-2012 Search in Google Scholar

Schmidt, G. A., Shindell, D. T., Miller, R. L., Mann, M. E., & Rind, D. (2004). General circulation modelling of Holocene climate variability. Quaternary Science Reviews, 23(20-22 SPEC. ISS.), 2167–2181. https://doi.org/10.1016/j.quascirev.2004.08.005.10.1016/j.quascirev.2004.08.005 Search in Google Scholar

Schmidt, M., & Teichmann, T. (2007). Development of an ultra high performance concrete for the company SW Umwelttechnik. Final report, Kassel, Germany. Search in Google Scholar

Scrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c.10.1023/B:INTS.0000042339.92990.4c Search in Google Scholar

Shannag, M. J., Brincker, R., & Hansen, W. (1996). Interfacial (fiber-matrix) properties of high-strength mortar (150 MPa) from fiber pullout. ACI Materials Journal, 93(5), 480–486. https://doi.org/10.14359/9853.10.14359/9853 Search in Google Scholar

Shannag, M. J., Brincker, R., & Hansen, W. (1997). Pullout behavior of steel fibers from cement-based composites. Cement and Concrete Research, 27(6), 925–936. https://doi.org/10.1016/S0008-8846(97)00061-6.10.1016/S0008-8846(97)00061-6 Search in Google Scholar

Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088.10.1016/j.conbuildmat.2015.10.088 Search in Google Scholar

Shi, T., Wei, S., Shen, J., & Ye, Q. (2012). Preparation of slag reactive powder concrete and the research on its resistance to chloride ion permeability. Advanced Materials Research, 391392, 1189–1194. https://doi.org/10.4028/www.scientific.net/AMR.391-392.1189.10.4028/www.scientific.net/AMR.391-392.1189 Search in Google Scholar

Siddique, R., & Khan, M. I. (2011). Supplementary cementing materials. In Engineering Materials. https://doi.org/10.1016/B978-0-08-102616-8.00003-4.10.1016/B978-0-08-102616-8.00003-4 Search in Google Scholar

Singh, S., Shukla, A., & Brown, R. (2004). Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research, 34(10), 1919–1925. https://doi.org/10.1016/j.cemconres.2004.02.014.10.1016/j.cemconres.2004.02.014 Search in Google Scholar

Snellings, R., Mertens, G., & Elsen, J. (2012). Supplementary cementitious materials. Reviews in Mineralogy and Geochemistry, 74(May), 211–278. https://doi.org/10.2138/rmg.2012.74.6.10.2138/rmg.2012.74.6 Search in Google Scholar

Sohaib, N., Seemab, F., Sana, G., & Mamoon, R. (2018). Using Polypropylene Fibers in Concrete to achieve maximum strength. https://doi.org/10.15224/978-1-63248-145-0-36.10.15224/978-1-63248-145-0-36 Search in Google Scholar

Sojobi, A. O. (2016). Evaluation of the performance of eco-friendly lightweight interlocking concrete paving units incorporating sawdust wastes and laterite. Cogent Engineering, 3(1). https://doi.org/10.1080/23311916.2016.1255168.10.1080/23311916.2016.1255168 Search in Google Scholar

Soliman, N. A., & Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Construction and Building Materials, 125, 600–612, https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.08.073.10.1016/j.conbuildmat.2016.08.073 Search in Google Scholar

Spasojevic, A. (2008). Structural Implications of Ultra-Hight Performance Fibre-Reinforced Concrete in Bridge Design. 19, 212–217. https://doi.org/10.5075/epfl-thesis-4051. Search in Google Scholar

Stengel, T. (2009). Effect of Surface Roughness on the Steel Fibre Bonding in Ultra High Performance Concrete (UHPC). Nanotechnology in Construction 3, 371–376. https://doi.org/10.1007/978-3-642-00980-8_50.10.1007/978-3-642-00980-8_50 Search in Google Scholar

T., Z., & W, K. (2016). Polyolefin fibres used in cementitious composites – manufacturing, properties and application. Czasopismo Techniczne, 2016(Budownictwo Zeszyt 3-B (9) 2016), 155–177. https://doi.org/10.4467/2353737XCT.16.223.5972. Search in Google Scholar

Tafraoui, A., Escadeillas, G., Lebaili, S., & Vidal, T. (2009). Metakaolin in the formulation of UHPC. Construction and Building Materials, 23(2), 669–674. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2008.02.018.10.1016/j.conbuildmat.2008.02.018 Search in Google Scholar

Tafraoui, A., Escadeillas, G., & Vidal, T. (2016). Durability of the Ultra High Performances Concrete containing metakaolin. Construction and Building Materials, 112, 980–987. https://doi.org/10.1016/j.conbuildmat.2016.02.169.10.1016/j.conbuildmat.2016.02.169 Search in Google Scholar

Tai, Y. S., & El-Tawil, S. (2017). High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete. Construction and Building Materials, 148, 204–218. https://doi.org/10.1016/j.conbuildmat.2017.05.018.10.1016/j.conbuildmat.2017.05.018 Search in Google Scholar

Tai, Y. S., El-Tawil, S., & Chung, T. H. (2016). Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates. Cement and Concrete Research, 89, 1–13. https://doi.org/10.1016/j.cemconres.2016.07.013.10.1016/j.cemconres.2016.07.013 Search in Google Scholar

Tanyildizi, H., & Çevik, A. (2010). Modeling mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming. Construction and Building Materials, 24(12), 2612–2618. https://doi.org/10.1016/j.conbuildmat.2010.05.001.10.1016/j.conbuildmat.2010.05.001 Search in Google Scholar

Tasdemir, C. (2003). Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete. Cement and Concrete Research, 33(10), 1637–1642. https://doi.org/10.1016/S0008-8846(03)00112-1.10.1016/S0008-8846(03)00112-1 Search in Google Scholar

Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Voo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Construction and Building Materials, 36, 538–548. https://doi.org/10.1016/j.conbuildmat.2012.06.013.10.1016/j.conbuildmat.2012.06.013 Search in Google Scholar

Taylor, H. F. W. (1997). Cement chemistry. Cement Chemistry. https://doi.org/10.1680/cc.25929.10.1680/cc.25929 Search in Google Scholar

Termkhajornkit, P., Nawa, T., Nakai, M., & Saito, T. (2005). Effect of fly ash on autogenous shrinkage. Cement and Concrete Research, 35(3), 473–482. https://doi.org/10.1016/j.cemconres.2004.07.010.10.1016/j.cemconres.2004.07.010 Search in Google Scholar

Toutanji, H., McNeil, S., & Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research, 28(7), 961–968. https://doi.org/10.1016/S0008-8846(98)00073-8.10.1016/S0008-8846(98)00073-8 Search in Google Scholar

Van Tuan, N., Ye, G., van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035, https://doi.org/https://doi.org/10.1016/j.conbuildmat.2010.11.046.10.1016/j.conbuildmat.2010.11.046 Search in Google Scholar

Vicente, M. A., González, D. C., Mínguez, J., Tarifa, M. A., Ruiz, G., & Hindi, R. (2018). Influence of the pore morphology of high strength concrete on its fatigue life. International Journal of Fatigue, 112, 106–116. https://doi.org/10.1016/j.ijfatigue.2018.03.006.10.1016/j.ijfatigue.2018.03.006 Search in Google Scholar

Vikan, H., & Justnes, H. (2007). Rheology of cementitious paste with silica fume or limestone. Cement and Concrete Research, 37(11), 1512–1517. https://doi.org/10.1016/j.cemconres.2007.08.012.10.1016/j.cemconres.2007.08.012 Search in Google Scholar

Wang, C., Yang, C., Liu, F., Wan, C., & Pu, X. (2012). Preparation of Ultra-High Performance Concrete with common technology and materials. Cement and Concrete Composites, 34(4), 538–544. https://doi.org/10.1016/j.cemconcomp.2011.11.005.10.1016/j.cemconcomp.2011.11.005 Search in Google Scholar

Wang, C., Zhou, S., Wang, B., … P. G.-G. and, & 2016, U. (2016). Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways. Geomech Eng, 11, 847–865.10.12989/gae.2016.11.6.847 Search in Google Scholar

Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015a). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.088.10.1016/j.conbuildmat.2015.10.088 Search in Google Scholar

Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015b). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377.10.1016/j.conbuildmat.2015.08.095 Search in Google Scholar

Wang, X. H., Jacobsen, S., He, J. Y., Zhang, Z. L., Lee, S. F., & Lein, H. L. (2009). Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar. Cement and Concrete Research, 39(8), 701–715. https://doi.org/10.1016/j.cemconres.2009.05.002.10.1016/j.cemconres.2009.05.002 Search in Google Scholar

Wang, Y., Li, V. C., & Backer, S. (1988a). Analysis of synthetic fiber pullout from a cement matrix. Bond- ing in Cementitious Composites. MRS Symposium. Proc., 114, 159–165.10.1557/PROC-114-159 Search in Google Scholar

Wang, Y., Li, V. C., & Backer, S. (1988b). Modelling of fibre pull-out from a cement matrix. International Journal of Cement Composites and Lightweight Concrete, 10(3), 143–149. https://doi.org/10.1016/0262-5075(88)90002-4.10.1016/0262-5075(88)90002-4 Search in Google Scholar

Werner, O. R., Scali, M. J., Rose, J. H., Aitcin, P. C., Abdun-Nur, E. A., Ashby, J. B., Bell, L. W., Best, F. J., Brenno, G. L., Butler, B. W., Call, B., Carrasquillo, R. L., Cook, J. E., Deno, D. W., & Deckman, J. T. (1987). Ground Granulated Blast-Furnace Slag As a Cementitious Constituent in Concrete. ACI Materials Journal, 84(4), 327–342. https://doi.org/10.14359/1623.10.14359/1623 Search in Google Scholar

Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Materials Journal, 109(4), 479–488. https://doi.org/10.14359/51683923.10.14359/51683923 Search in Google Scholar

Wu, Z., Khayat, K. H., & Shi, C. (2017). Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cement and Concrete Research, 95, 247–256. https://doi.org/10.1016/j.cemconres.2017.02.031.10.1016/j.cemconres.2017.02.031 Search in Google Scholar

Wu, Z., Khayat, K. H., & Shi, C. (2018). How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cement and Concrete Composites, 90, 193–201. https://doi.org/10.1016/j.cemconcomp.2018.03.021.10.1016/j.cemconcomp.2018.03.021 Search in Google Scholar

Wu, Z., Khayat, K. H., & Shi, C. (2019). Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cement and Concrete Research, 123. https://doi.org/10.1016/j.cemconres.2019.105786.10.1016/j.cemconres.2019.105786 Search in Google Scholar

Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8–14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.10.1016/j.conbuildmat.2015.11.028 Search in Google Scholar

Wu, Z., Shi, C., & Khayat, K. H. (2016). Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 71, 97–109. https://doi.org/10.1016/j.cemconcomp.2016.05.005.10.1016/j.cemconcomp.2016.05.005 Search in Google Scholar

Wu, Z., Shi, C., & Khayat, K. H. (2019). Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Composites Part B: Engineering, 174. https://doi.org/10.1016/j.compositesb.2019.107021.10.1016/j.compositesb.2019.107021 Search in Google Scholar

Xie, T., Fang, C., Mohamad Ali, M. S., & Visintin, P. (2018). Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cement and Concrete Composites, 91, 156–173. https://doi.org/10.1016/j.cemconcomp.2018.05.009.10.1016/j.cemconcomp.2018.05.009 Search in Google Scholar

Xue, J., Briseghella, B., Huang, F., Nuti, C., Tabatabai, H., & Chen, B. (2020). Review of ultra-high performance concrete and its application in bridge engineering. Construction and Building Materials, 260, 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844.10.1016/j.conbuildmat.2020.119844 Search in Google Scholar

Yan, P. Y., & Feng, J. W. (2008). Mechanical Behaviour of UHPC and UHPC Filled Steel Tubular Stub Columns. Proceedings of the International Symposium on Ultra High Performance Concrete of the Second International Symposium on Ultra High Performance Concrete, 355–364. Search in Google Scholar

Yang, J., Wang, Q., & Zhou, Y. (2017). Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios. Advances in Materials Science and Engineering. https://doi.org/10.1155/2017/2695435.10.1155/2017/2695435 Search in Google Scholar

Yang, S., Yue, X., Liu, X., & Tong, Y. (2015). Properties of self-compacting lightweight concrete containing recycled plastic particles. Construction and Building Materials, 84, 444–453, https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.03.038.10.1016/j.conbuildmat.2015.03.038 Search in Google Scholar

Yazici, H., Yardimci, M. Y., Aydin, S., & Karabulut, A. Ş. (2009). Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Construction and Building Materials, 23(3), 1223–1231. https://doi.org/10.1016/j.conbuildmat.2008.08.003.10.1016/j.conbuildmat.2008.08.003 Search in Google Scholar

Yew, M. K., Mahmud, H. Bin, Ang, B. C., & Yew, M. C. (2015). Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete. Construction and Building Materials, 90, 36–43. https://doi.org/10.1016/j.conbuildmat.2015.04.024.10.1016/j.conbuildmat.2015.04.024 Search in Google Scholar

Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105.10.1016/j.conbuildmat.2015.05.105 Search in Google Scholar

Yoo, D. Y., Lee, J. H., & Yoon, Y. S. (2013). Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures, 106, 742–753. https://doi.org/10.1016/j.compstruct.2013.07.033.10.1016/j.compstruct.2013.07.033 Search in Google Scholar

Yoo, D. Y., Shin, H. O., Yang, J. M., & Yoon, Y. S. (2014). Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Composites Part B: Engineering, 58, 122–133. https://doi.org/10.1016/j.compositesb.2013.10.081.10.1016/j.compositesb.2013.10.081 Search in Google Scholar

Yoo, D. Y., & Yoon, Y. S. (2016). A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 10(2), 125–142. https://doi.org/10.1007/s40069-016-0143-x.10.1007/s40069-016-0143-x Search in Google Scholar

Yoshihiro, T., & Maekawa, K. (2016). The Innovation and Application of UHPFRC Bridges in Japan. April. Search in Google Scholar

Yu, R., Spiesz, P., & Brouwers, H. J. H. (2014a). Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Construction and Building Materials, 65, 140–150. https://doi.org/10.1016/j.conbuildmat.2014.04.063.10.1016/j.conbuildmat.2014.04.063 Search in Google Scholar

Yu, R., Spiesz, P., & Brouwers, H. J. H. (2014b). Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2013.11.002.10.1016/j.cemconres.2013.11.002 Search in Google Scholar

Yu, R., Spiesz, P., & Brouwers, H. J. H. (2015). Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement and Concrete Composites, 55, 383–394. https://doi.org/10.1016/j.cemconcomp.2014.09.024.10.1016/j.cemconcomp.2014.09.024 Search in Google Scholar

Yu, Z. R., Gao, K., An, M. Z., & Han, S. (2013). Influence of micro-structure on the strength and resistance to chloride ion permeability of reactive powder concrete. Xi’an Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of Architecture and Technology, 45(1), 31–37. Search in Google Scholar

Zeiml, M., Leithner, D., Lackner, R., & Mang, H. A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cement and Concrete Research, 36(5), 929–942. https://doi.org/10.1016/j.cemconres.2005.12.018.10.1016/j.cemconres.2005.12.018 Search in Google Scholar

Zhang, D., Dasari, A., & Tan, K. H. (2018). On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers. Cement and Concrete Research, 113, 169–177. https://doi.org/10.1016/j.cemconres.2018.08.012.10.1016/j.cemconres.2018.08.012 Search in Google Scholar

Zhang, D., Tan, K. H., Dasari, A., & Weng, Y. (2020). Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cement and Concrete Composites, 109. https://doi.org/10.1016/j.cemconcomp.2020.103512.10.1016/j.cemconcomp.2020.103512 Search in Google Scholar

Zhang, W., Min, H., Gu, X., Xi, Y., & Xing, Y. (2015). Mesoscale model for thermal conductivity of concrete. Construction and Building Materials, 98, 8–16. https://doi.org/10.1016/j.conbuildmat.2015.08.106.10.1016/j.conbuildmat.2015.08.106 Search in Google Scholar

Zhang, Y., Zhang, C., Zhu, Y., Cao, J., & Shao, X. (2020). An experimental study: various influence factors affecting interfacial shear performance of UHPC-NSC. Construction and Building Materials, 236. https://doi.org/10.1016/j.conbuildmat.2019.117480.10.1016/j.conbuildmat.2019.117480 Search in Google Scholar

Zhou, M., Lu, W., Song, J., & Lee, G. C. (2018). Application of Ultra-High Performance Concrete in bridge engineering. Construction and Building Materials, 186, 1256–1267. https://doi.org/10.1016/j.conbuildmat.2018.08.036.10.1016/j.conbuildmat.2018.08.036 Search in Google Scholar

Zohrevand, P., & Mirmiran, A. (2011). Behavior of Ultrahigh-Performance Concrete Confined by Fiber-Reinforced Polymers. Journal of Materials in Civil Engineering, 23(12), 1727–1734. https://doi.org/10.1061/(asce)mt.1943-5533.0000324.10.1061/(ASCE)MT.1943-5533.0000324 Search in Google Scholar

Zollo, R. F. (1997). Fiber-reinforced concrete: An overview after 30 years of development. Cement and Concrete Composites, 19(2), 107–122. https://doi.org/10.1016/s0958-9465(96)00046-7.10.1016/S0958-9465(96)00046-7 Search in Google Scholar

eISSN:
2284-7197
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy