Open Access

Glutathione S-transferase is a good biomarker in acrylamide induced neurotoxicity and genotoxicity


Cite

Abbott NJ, Rönnbäck L, Hansson E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci7(1): 41–53.10.1038/nrn1824Search in Google Scholar

Abramovitz M, Listowsky I. (1987). Selective expression of a unique glutathione S-transferase Yb3 gene in rat brain. Journal of Biological Chemistry262(16): 7770–7773.10.1016/S0021-9258(18)47634-XSearch in Google Scholar

Adler ID, Zouh R, Schmid E. (1993). Perturbation of cell division by acrylamide in vitro and in vivo. Mutat Res301(4): 249–54.10.1016/0165-7992(93)90065-4Search in Google Scholar

Allam A, El-Ghareeb AA, Abdul-Hamid M, Baikry A, Sabri MI. (2011). Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: biochemical and morphological studies. Toxicol Ind Health27(4): 1–16.10.1177/0748233710386412Search in Google Scholar

Allam AA, Abdul-Hamid M, Bakry A, El-Ghareeb A, Ajarem JS, Sabri M. (2013). Effect of acrylamide on cerebral neurons development in albino rat. Life Sci10(3): 1814–1825.Search in Google Scholar

Armstrong RN. (1994). Glutathione S-Transferases: Structure and Mechanism of an Archetypical Detoxication Enzyme. Adv Enzymol Relat Areas Mol Biol69: 1–44.10.1002/9780470123157.ch1Search in Google Scholar

Arakawa S. (2013). Utilization of glutathione S-transferase Mu 1-and Theta 1-null mice as animal models for absorption, distribution, metabolism, excretion and toxicity studies. Expert Opin Drug Metab Toxicol9(6): 725–736.10.1517/17425255.2013.780027Search in Google Scholar

Awad ME, Abdel-Rahman MS, Hassan SA. (1998). Acrylamide toxicity in isolated rat hepatocytes. Toxicol In Vitro12(6): 699–704.10.1016/S0887-2333(98)00051-4Search in Google Scholar

Besaratinia A, Pfeifer GP. (2003). Weak yet distinct mutagenicity of acrylamide in mammalian cells. J Natl Cancer Inst95(12): 889–896.10.1093/jnci/95.12.889Search in Google Scholar

Besaratinia A, Pfeifer GP. (2004). Genotoxicity of acrylamide and glycidamide. J Natl Cancer Inst96(13): 1023–1029.10.1093/jnci/djh186Search in Google Scholar

Björk K, Saarikoski ST, Arlinde C, Kovanen L, Osei-Hyiaman D, Ubaldi M, Reimers M, Hyytiä P, Heilig M, Sommer WH. (2006). Glutathione-S-transferase expression in the brain: possible role in ethanol preference and longevity. FASEB J20(11): 1826–1835.10.1096/fj.06-5896comSearch in Google Scholar

Bull S. (2007). Review of Environmental Chemicals and Neurotoxicity: Focus on Neurological Diseases. Health Protection Agency, Govt. of UK.Search in Google Scholar

Cammer W, Tansey F, Abramovitz M, Ishigaki S, Listowsky I. (1989). Differential localization of glutathione-S-transferase Yp and Yb subunits in oligodendrocytes and astrocytes of rat brain. J Neurochem52(3): 876–883.10.1111/j.1471-4159.1989.tb02536.xSearch in Google Scholar

Choi SD, Wania F. (2011). On the reversibility of environmental contamination with persistent organic pollutants. Environ Sci Technol45(20): 8834–8841.10.1021/es2017544Search in Google Scholar

da Fonseca RR, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A. (2010). Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evol Biol10(1): 281.10.1186/1471-2148-10-281Search in Google Scholar

Das M, Mukhtar H, Seth PK. (1982). Effect of acrylamide on brain and hepatic mixed-function oxidases and glutathione-S-transferase in rats. Toxicol Appl Pharmacol66(3): 420–6.10.1016/0041-008X(82)90308-8Search in Google Scholar

Dasari S, Ganjayi MS, Oruganti L, Balaji H, Meriga B. (2017a). Glutathione S-transferases Detoxify Endogenous and Exogenous Toxic Agents - Minireview. JDVAR5(5): 00154.10.15406/jdvar.2017.05.00154Search in Google Scholar

Dasari S, Ganjayi MS, Meriga B, Kedam T. (2017b). Developmental neurotoxicity of acrylamide: defensive role of chick embryo glutathione S-transferases. Adv Anim Vet Sci5(7): 299–306.Search in Google Scholar

Dearfield KL, Douglas GR, Ehling UH, Moore MM, Sega GA, Brusick DJ. (1995). Acrylamide: a review of its genotoxicity and an assessment of heritable genetic risk. Mutat Res330(1): 71–99.10.1016/0027-5107(95)00037-JSearch in Google Scholar

de Leon J, Susce MT, Pan RM, Koch WH, Wedlund PJ. (2005). Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J Clin Psychopharmacol25(5): 448–456.10.1097/01.jcp.0000177546.34799.afSearch in Google Scholar

Deng H, He F, Zhang S, Calleman CJ, Costa LG. (1993). Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int Arch Occup Environ Health65(1): 53–56.10.1007/BF00586059Search in Google Scholar

Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H. (2003). The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics4(1): 35.10.1186/1471-2164-4-35Search in Google Scholar

Duru NK, Morshedi M, Oehninger S. (2000). Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril74(6): 1200–1207.10.1016/S0015-0282(00)01591-0Search in Google Scholar

Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ. (2008). Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res637(1): 23–39.10.1016/j.mrfmmm.2007.06.010Search in Google Scholar

Frova C. (2006). Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng23(4): 149–169.10.1016/j.bioeng.2006.05.020Search in Google Scholar

Friedman M. (2003). Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem51(16): 4504–4526.10.1021/jf030204+Search in Google Scholar

Garey J, Paule MG. (2010). Effects of chronic oral acrylamide exposure on incremental repeated acquisition (learning) task performance in Fischer 344 rats. Neurotoxicol Teratol32(2): 220–225.10.1016/j.ntt.2009.10.001Search in Google Scholar

Habig WH, Pabst MJ, Jakoby WB. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem249(22): 7130–7139.10.1016/S0021-9258(19)42083-8Search in Google Scholar

Hayes JD, Flanagan JU, Jowsey IR. (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol45: 51–88.10.1146/annurev.pharmtox.45.120403.095857Search in Google Scholar

Hayes JD, Mclellan LI. (1999). Glutathione and glutathione-dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Radic Res31(4): 273–300.10.1080/10715769900300851Search in Google Scholar

Hayes JD, Pulford DJ. (1995). The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part II. Crit Rev Biochem Mol Biol30(6): 521–600.10.3109/10409239509083492Search in Google Scholar

Halliwell B, Gutteridge JM. (2015). Free radicals in biology and medicine. Oxford University Press, USA.10.1093/acprof:oso/9780198717478.001.0001Search in Google Scholar

Helm PA, Milne J, Hiriart-Baer V, Crozier P, Kolic T, Lega R, Chen T, MacPherson K, Gewurtz S, Winter J, Myers A. (2011). Lake-wide distribution and depositional history of current-and past-use persistent organic pollutants in Lake Simcoe, Ontario, Canada. J Great Lakes Res37: 132–141.10.1016/j.jglr.2011.03.016Search in Google Scholar

Hiratsuka A, Yokoi A, Sebata N, Watabe T, Hatayama I, Sato K. (1989). Glutathione conjugation of the fluorophotometric epoxide substrate, 7-glycidoxycoumarin (GOC), by rat liver glutathione transferase isoenzymes. Biochem Pharmacol38(16): 2609–2613.10.1016/0006-2952(89)90545-5Search in Google Scholar

Honig LS, Rosenberg RN. (2000). Apoptosis and neurologic disease. The Am J Med108(4): 317–330.10.1016/S0002-9343(00)00291-6Search in Google Scholar

Johnson JA, el Barbary AI, Kornguth SE, Brugge JF, Siegel FL. (1993). Glutathione S-transferase isoenzymes in rat brain neurons and glia. J Neurosci13(5): 2013–2023.10.1523/JNEUROSCI.13-05-02013.1993Search in Google Scholar

Konings EJ, Baars AJ, Van Klaveren JD, Spanjer MC, Rensen PM, Hiemstra M, Van Kooij JA, Peters PW. (2003). Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem Toxicol41(11): 1569–1579.10.1016/S0278-6915(03)00187-XSearch in Google Scholar

Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F. (2000). Organic toxicants and plants. Ecotoxicology and environmental safety47(1): 1–26.10.1006/eesa.2000.1929Search in Google Scholar

Kumar A, Dhull DK, Gupta V, Channana P, Singh A, Bhardwaj M, Ruhal P, Mittal R. (2017). Role of Glutathione-S-transferases in neurological problems. Expert Opin Ther Pat27(3): 299–309.10.1080/13543776.2017.1254192Search in Google Scholar

Lehning EJ, Balaban CD, Ross JF, LoPachin RM. (2003). Acrylamide neuropathy: II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord. Neurotoxicology24(1): 109–23.10.1016/S0161-813X(02)00192-4Search in Google Scholar

Lo HW, Ali-Osman F. (2007). Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol7(4): 367–374.10.1016/j.coph.2007.06.009Search in Google Scholar

LoPachin RM, Balaban CD, Ross JF. (2003). Acrylamide axonopathy revisited. Toxicol Appl Pharmacol188(3): 135–153.10.1016/S0041-008X(02)00072-8Search in Google Scholar

LoPachin RM, DeCaprio AP. (2005). Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicol Sci86(2): 214–225.10.1093/toxsci/kfi197Search in Google Scholar

LoPachin RM, Barber DS, He D, Das S. (2006). Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol Sci89(1): 224–234.10.1093/toxsci/kfj005Search in Google Scholar

LoPachin RM, Gavin T. (2012). Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ Health Perspect120(12): 1650–1657.10.1289/ehp.1205432Search in Google Scholar

Maier A, Kohrman-Vincent M, Hertzberg R, Allen B, Haber LT, Dourson M. (2012). Critical review of dose–response options for F344 rat mammary tumors for acrylamide–Additional insights based on mode of action. Food Chem Toxicol50(5): 1763–1775.10.1016/j.fct.2012.02.002Search in Google Scholar

Mannervik B, Danielson UH, Ketterer B. (1988). Glutathione transferases—structure and catalytic activity. CRC Crit Rev Biochem23(3): 283–337.10.3109/10409238809088226Search in Google Scholar

Mannervik B. (1986). Glutathione and the evolution of enzymes for detoxication of products of oxygen metabolism. Chemica Scripta263: 281–284.Search in Google Scholar

Martinez-Lara E, Siles E, Hernández R, Cañuelo AR, del Moral ML, Jiménez A, Blanco S, López-Ramos JC, Esteban FJ, Pedrosa JA, Peinado MA. (2003). Glutathione S-transferase isoenzymatic response to aging in rat cerebral cortex and cerebellum. Neurobiol Aging24(3): 501–509.10.1016/S0197-4580(02)00139-2Search in Google Scholar

Mottram DS, Wedzicha BL, Dodson AT. (2002). Food chemistry: acrylamide is formed in the Maillard reaction. Nature419(6906): 448–449.10.1038/419448aSearch in Google Scholar

Nordin-Andersson M, Walum E, Kjellstrand P, Forsby A. (2003). Acrylamideinduced effects on general and neurospecific cellular functions during exposure and recovery. Cell Biol Toxicol19(1): 43–51.10.1023/A:1022017731328Search in Google Scholar

Haider RA, Robin MA, Fang JK, Avadhani NG. (2002). Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J366(1): 45–55.10.1042/bj20020533Search in Google Scholar

Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Törnqvist M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. J Agric Food Chem51(24): 7012–7018.10.1021/jf034649+Search in Google Scholar

Satoh K, Hatayama I, Tsuchida S, Sato K. (1991). Biochemical characteristics of a preneoplastic marker enzyme glutathione S-transferase P-form (7-7). Arch Biochem Biophys285(2): 312–316.10.1016/0003-9861(91)90365-PSearch in Google Scholar

Seale SM, Feng Q, Agarwal AK, El-Alfy AT. (2012). Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav101(1): 77–84.10.1016/j.pbb.2011.12.006Search in Google Scholar

Shao L, Young LT, Wang JF. (2005). Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry58(11): 879–884.10.1016/j.biopsych.2005.04.052Search in Google Scholar

Sheehan D, MEADE G, FOLEY VM. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J360(1): 1–6.10.1042/bj3600001Search in Google Scholar

Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC. 2002. Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res16(3): 256–60.10.1002/ptr.85412164272Search in Google Scholar

Sreenivasulu D, Balaji M. (2016). Rat brain glutathione S-transferases potentially defends acrylamide induced neurotoxicity and genotoxicity. IOSR-JBB2(6): 75–80.Search in Google Scholar

Srivastava S, Sabri MI, Agrawal AK, Seth PK. (1986). Effect of single and repeated doses of acrylamide and bis-acrylamide on glutathione-S-transferase and dopamine receptors in rat brain. Brain Res371(2): 319–23.10.1016/0006-8993(86)90369-0Search in Google Scholar

Struzynska L, Sulkowski G, Lenkiewicz A, Rafalowska U. (2002). Lead stimulates the glutathione system in selective regions of rat brain. Folia Neuropathol40(4): 203–209.Search in Google Scholar

Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC, Riediker S. (2002). Food chemistry: acrylamide from Maillard reaction products. Nature419(6906): 449–450.10.1038/419449aSearch in Google Scholar

Tansey FA, Cammer W. (1991). A Pi Form of Glutathione-S-Transferase Is a Myelin-and Oligodendrocyte-Associated Enzyme in Mouse Brain. Journal of neurochemistry57(1): 95–102.10.1111/j.1471-4159.1991.tb02104.xSearch in Google Scholar

Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem50(17): 4998–5006.10.1021/jf020302fSearch in Google Scholar

Van der Oost R, Beyer J, Vermeulen NP. (2003). Fish bioaccumulation and bio-markers in environmental risk assessment: a review. Environ Toxicol Pharmacol13(2): 57–149.10.1016/S1382-6689(02)00126-6Search in Google Scholar

Weiss G. (2002). Acrylamide in food: Uncharted territory. Science297(5578): 27.10.1126/science.297.5578.27aSearch in Google Scholar

Wilce MC, Board PG, Feil SC, Parker MW. (1995). Crystal structure of a theta-class glutathione transferase. EMBO J14(10): 2133–2143.10.1002/j.1460-2075.1995.tb07207.xSearch in Google Scholar

Yang HJ, Lee SH, Jin Y, Choi JH, Han CH, Lee MH. (2005). Genotoxicity and toxicological effects of acrylamide on reproductive system in male rats. J Vet Sci6(2): 103–109.10.4142/jvs.2005.6.2.103Search in Google Scholar

Yousef MI, El-Demerdash FM. (2006). Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology219(1): 133–141.10.1016/j.tox.2005.11.008Search in Google Scholar

Zhang L, Gavin T, Barber DS, LoPachin RM. (2011). Role of the Nrf2-ARE pathway in acrylamide neurotoxicity. Toxicol Lett205(1): 1–7.10.1016/j.toxlet.2011.04.011Search in Google Scholar

Zhang M, Chen M, Tong W. (2011). Is toxicogenomics a more reliable and sensitive biomarker than conventional indicators from rats to predict drug-induced liver injury in humans? Chem Res Toxicol25(1): 122–129.10.1021/tx200320e22122743Search in Google Scholar

Zimniak P. (2008). Detoxification reactions: relevance to aging. Ageing Res Rev7(4): 281–300.10.1016/j.arr.2008.04.001Search in Google Scholar

eISSN:
1337-9569
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Pharmacology, Toxicology