Open Access

3D print orientation optimization and comparative analysis of NSGA-II versus NSGA-II with Q-learning

 and   
Jul 01, 2025

Cite
Download Cover

J. Wang, J. Dai, K. S. Li, J. Wang, M. Wei, and M. Pang, “Cost-effective printing of 3D objects with self-supporting property,” Visual Computer, vol. 35, no. 5, pp. 639–651, May 2019, doi: 10.1007/s00371-018-1493-y. WangJ. DaiJ. LiK. S. WangJ. WeiM. PangM. “Cost-effective printing of 3D objects with self-supporting property,” Visual Computer 35 5 639 651 May 2019 10.1007/s00371-018-1493-y Open DOISearch in Google Scholar

L. Di Angelo, P. Di Stefano, and A. Marzola, “Surface quality prediction in FDM additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 93, no. 9–12, pp. 3655–3662, Dec. 2017, doi: 10.1007/s00170-017-0763-6. Di AngeloL. Di StefanoP. MarzolaA. “Surface quality prediction in FDM additive manufacturing,” International Journal of Advanced Manufacturing Technology 93 9–12 3655 3662 Dec. 2017 10.1007/s00170-017-0763-6 Open DOISearch in Google Scholar

M. A. Matos, A. M. A. C. Rocha, L. A. Costa, and A. I. Pereira, “A Multi-objective Approach to Solve the Build Orientation Problem in Additive Manufacturing,” in Computational Science and Its Applications – ICCSA 2019, Springer International Publishing, 2019, pp. 261–276. MatosM. A. RochaA. M. A. C. CostaL. A. PereiraA. I. “A Multi-objective Approach to Solve the Build Orientation Problem in Additive Manufacturing,” in Computational Science and Its Applications – ICCSA 2019 Springer International Publishing 2019 261 276 Search in Google Scholar

M. A. Matos, A. M. A. C. Rocha, and A. I. Pereira, “On optimizing the build orientation problem using genetic algorithm,” in AIP Conference Proceedings, 2019. MatosM. A. RochaA. M. A. C. PereiraA. I. “On optimizing the build orientation problem using genetic algorithm,” in AIP Conference Proceedings 2019 Search in Google Scholar

Li, Q. Hou, M. Zhao, and Z. Wu, “Reliable Task Planning of Networked Devices as a Multi-Objective Problem Using NSGA-II and Reinforcement Learning,” IEEE Access, vol. 10, pp. 6684–6695, 2022, doi: 10.1109/ACCESS.2022.3141912. Li HouQ. ZhaoM. WuZ. “Reliable Task Planning of Networked Devices as a Multi-Objective Problem Using NSGA-II and Reinforcement Learning,” IEEE Access 10 6684 6695 2022 10.1109/ACCESS.2022.3141912 Open DOISearch in Google Scholar

C. L. Tseng, C. S. Cheng, and Y. H. Shen, “A Reinforcement Learning-Based Multi-Objective Bat Algorithm Applied to Edge Computing Task-Offloading Decision Making,” Applied Sciences (Switzerland), vol. 14, no. 12, Jun. 2024, doi: 10.3390/app14125088. TsengC. L. ChengC. S. ShenY. H. “A Reinforcement Learning-Based Multi-Objective Bat Algorithm Applied to Edge Computing Task-Offloading Decision Making,” Applied Sciences (Switzerland) 14 12 Jun. 2024 10.3390/app14125088 Open DOISearch in Google Scholar

J. F. P. Lovo, C. A. Fortulan, and M. M. da Silva, “Optimal deposition orientation in fused deposition modelling for maximizing the strength of three-dimensional printed truss-like structures,” Proc Inst Mech Eng B J Eng Manuf, vol. 233, no. 4, pp. 1206–1215, May 2018. LovoJ. F. P. FortulanC. A. da SilvaM. M. “Optimal deposition orientation in fused deposition modelling for maximizing the strength of three-dimensional printed truss-like structures,” Proc Inst Mech Eng B J Eng Manuf 233 4 1206 1215 May 2018 Search in Google Scholar

M. A. Matos, A. M. A. C. Rocha, and L. A. Costa, “Many-objective optimization of build part orientation in additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 112, no. 3–4, pp. 747–762, Jan. 2021, doi: 10.1007/s00170-020-06369-5. MatosM. A. RochaA. M. A. C. CostaL. A. “Many-objective optimization of build part orientation in additive manufacturing,” International Journal of Advanced Manufacturing Technology 112 3–4 747 762 Jan. 2021 10.1007/s00170-020-06369-5 Open DOISearch in Google Scholar

X. J. Chen, J. L. Hu, Q. L. Zhou, C. Politis, and Y. Sun, “An automatic optimization method for minimizing supporting structures in additive manufacturing,” Adv Manuf, vol. 8, no. 1, pp. 49–58, Mar. 2020, doi: 10.1007/s40436-019-00277-y. ChenX. J. HuJ. L. ZhouQ. L. PolitisC. SunY. “An automatic optimization method for minimizing supporting structures in additive manufacturing,” Adv Manuf 8 1 49 58 Mar. 2020 10.1007/s40436-019-00277-y Open DOISearch in Google Scholar

V. Yannibelli, E. Pacini, D. Monge, C. Mateos, and G. Rodriguez, “A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud,” Sci Program, vol. 2020, 2020, doi: 10.1155/2020/4653204. YannibelliV. PaciniE. MongeD. MateosC. RodriguezG. “A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud,” Sci Program 2020 2020 10.1155/2020/4653204 Open DOISearch in Google Scholar

R. Parayoga, A. Maria, and S. Asih, “Empirical study of MOPSO and NSGA II comparison inmulti-objective location routing problem incorporating the service level of delivery.” ParayogaR. MariaA. AsihS. “Empirical study of MOPSO and NSGA II comparison inmulti-objective location routing problem incorporating the service level of delivery.” Search in Google Scholar

B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algorithms: A Comprehensive Classification and Applications,” IEEE Access, vol. 7, pp. 133653–133667, 2019, doi: 10.1109/ACCESS.2019.2941229. JangB. KimM. HarerimanaG. KimJ. W. “Q-Learning Algorithms: A Comprehensive Classification and Applications,” IEEE Access 7 133653 133667 2019 10.1109/ACCESS.2019.2941229 Open DOISearch in Google Scholar

A. I. Portoacă, R. G. Ripeanu, A. Diniță, and M. Tănase, “Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance,” Polymers (Basel), vol. 15, no. 16, Aug. 2023, doi: 10.3390/polym15163419. PortoacăA. I. RipeanuR. G. DinițăA. TănaseM. “Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance,” Polymers (Basel) 15 16 Aug. 2023 10.3390/polym15163419 Open DOISearch in Google Scholar

H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Performance Comparison of NSGA-II and NSGA-III on Various Many-Objective Test Problems,” 2016. IshibuchiH. ImadaR. SetoguchiY. NojimaY. “Performance Comparison of NSGA-II and NSGA-III on Various Many-Objective Test Problems,” 2016 Search in Google Scholar

J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland), vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211573. HaoJ. YangX. WangC. TuR. ZhangT. “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland) 12 22 Nov. 2022 10.3390/app122211573 Open DOISearch in Google Scholar

2016 IEEE Congress on Evolutionary Computation (CEC). Institute of Electrical and Electronics Engineers (IEEE), 2016. 2016 IEEE Congress on Evolutionary Computation (CEC). Institute of Electrical and Electronics Engineers (IEEE), 2016. Search in Google Scholar

D. Goh, S. L. Sing, and W. Y. Yeong, “A review on machine learning in 3D printing: applications, potential, and challenges,” Artif Intell Rev, vol. 54, no. 1, pp. 63–94, Jan. 2021, doi: 10.1007/s10462-020-09876-9. GohD. SingS. L. YeongW. Y. “A review on machine learning in 3D printing: applications, potential, and challenges,” Artif Intell Rev 54 1 63 94 Jan. 2021 10.1007/s10462-020-09876-9 Open DOISearch in Google Scholar

J. Du, R. Liu, D. Cheng, X. Wang, T. Zhang, and F. Yu, “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel), vol. 16, no. 8, Aug. 2024, doi: 10.3390/sym16081062. DuJ. LiuR. ChengD. WangX. ZhangT. YuF. “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel) 16 8 Aug. 2024 10.3390/sym16081062 Open DOISearch in Google Scholar

X. Wen et al., “Effective Improved NSGA-II Algorithm for Multi-Objective Integrated Process Planning and Scheduling,” Mathematics, vol. 11, no. 16, p. 3523, Aug. 2023, doi: 10.3390/math11163523. WenX. “Effective Improved NSGA-II Algorithm for Multi-Objective Integrated Process Planning and Scheduling,” Mathematics 11 16 3523 Aug. 2023 10.3390/math11163523 Open DOISearch in Google Scholar

R. Wu, R. Wang, J. Hao, Q. Wu, P. Wang, and D. Niyato, “Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II,” Jul. 2024, [Online]. Available: http://arxiv.org/abs/2407.13113 WuR. WangR. HaoJ. WuQ. WangP. NiyatoD. “Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II,” Jul. 2024 [Online]. Available: http://arxiv.org/abs/2407.13113 Search in Google Scholar

R. Chen, B. Wu, H. Wang, H. Tong, and F. Yan, “A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources.” [Online]. Available: https://ssrn.com/abstract=4822936 ChenR. WuB. WangH. TongH. YanF. “A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources.” [Online]. Available: https://ssrn.com/abstract=4822936 Search in Google Scholar

J. Du, R. Liu, D. Cheng, X. Wang, T. Zhang, and F. Yu, “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel), vol. 16, no. 8, Aug. 2024, doi: 10.3390/sym16081062. DuJ. LiuR. ChengD. WangX. ZhangT. YuF. “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel) 16 8 Aug. 2024 10.3390/sym16081062 Open DOISearch in Google Scholar

J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland), vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211573. HaoJ. YangX. WangC. TuR. ZhangT. “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland) 12 22 Nov. 2022 10.3390/app122211573 Open DOISearch in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Engineering, Introductions and Overviews, Engineering, other