This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
J. Wang, J. Dai, K. S. Li, J. Wang, M. Wei, and M. Pang, “Cost-effective printing of 3D objects with self-supporting property,” Visual Computer, vol. 35, no. 5, pp. 639–651, May 2019, doi: 10.1007/s00371-018-1493-y.WangJ.DaiJ.LiK. S.WangJ.WeiM.PangM.“Cost-effective printing of 3D objects with self-supporting property,”Visual Computer355639651May201910.1007/s00371-018-1493-yOpen DOISearch in Google Scholar
L. Di Angelo, P. Di Stefano, and A. Marzola, “Surface quality prediction in FDM additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 93, no. 9–12, pp. 3655–3662, Dec. 2017, doi: 10.1007/s00170-017-0763-6.Di AngeloL.Di StefanoP.MarzolaA.“Surface quality prediction in FDM additive manufacturing,”International Journal of Advanced Manufacturing Technology939–1236553662Dec.201710.1007/s00170-017-0763-6Open DOISearch in Google Scholar
M. A. Matos, A. M. A. C. Rocha, L. A. Costa, and A. I. Pereira, “A Multi-objective Approach to Solve the Build Orientation Problem in Additive Manufacturing,” in Computational Science and Its Applications – ICCSA 2019, Springer International Publishing, 2019, pp. 261–276.MatosM. A.RochaA. M. A. C.CostaL. A.PereiraA. I.“A Multi-objective Approach to Solve the Build Orientation Problem in Additive Manufacturing,”inComputational Science and Its Applications – ICCSA 2019Springer International Publishing2019261276Search in Google Scholar
M. A. Matos, A. M. A. C. Rocha, and A. I. Pereira, “On optimizing the build orientation problem using genetic algorithm,” in AIP Conference Proceedings, 2019.MatosM. A.RochaA. M. A. C.PereiraA. I.“On optimizing the build orientation problem using genetic algorithm,”inAIP Conference Proceedings2019Search in Google Scholar
Li, Q. Hou, M. Zhao, and Z. Wu, “Reliable Task Planning of Networked Devices as a Multi-Objective Problem Using NSGA-II and Reinforcement Learning,” IEEE Access, vol. 10, pp. 6684–6695, 2022, doi: 10.1109/ACCESS.2022.3141912.LiHouQ.ZhaoM.WuZ.“Reliable Task Planning of Networked Devices as a Multi-Objective Problem Using NSGA-II and Reinforcement Learning,”IEEE Access1066846695202210.1109/ACCESS.2022.3141912Open DOISearch in Google Scholar
C. L. Tseng, C. S. Cheng, and Y. H. Shen, “A Reinforcement Learning-Based Multi-Objective Bat Algorithm Applied to Edge Computing Task-Offloading Decision Making,” Applied Sciences (Switzerland), vol. 14, no. 12, Jun. 2024, doi: 10.3390/app14125088.TsengC. L.ChengC. S.ShenY. H.“A Reinforcement Learning-Based Multi-Objective Bat Algorithm Applied to Edge Computing Task-Offloading Decision Making,”Applied Sciences (Switzerland)1412Jun.202410.3390/app14125088Open DOISearch in Google Scholar
J. F. P. Lovo, C. A. Fortulan, and M. M. da Silva, “Optimal deposition orientation in fused deposition modelling for maximizing the strength of three-dimensional printed truss-like structures,” Proc Inst Mech Eng B J Eng Manuf, vol. 233, no. 4, pp. 1206–1215, May 2018.LovoJ. F. P.FortulanC. A.da SilvaM. M.“Optimal deposition orientation in fused deposition modelling for maximizing the strength of three-dimensional printed truss-like structures,”Proc Inst Mech Eng B J Eng Manuf233412061215May2018Search in Google Scholar
M. A. Matos, A. M. A. C. Rocha, and L. A. Costa, “Many-objective optimization of build part orientation in additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 112, no. 3–4, pp. 747–762, Jan. 2021, doi: 10.1007/s00170-020-06369-5.MatosM. A.RochaA. M. A. C.CostaL. A.“Many-objective optimization of build part orientation in additive manufacturing,”International Journal of Advanced Manufacturing Technology1123–4747762Jan.202110.1007/s00170-020-06369-5Open DOISearch in Google Scholar
X. J. Chen, J. L. Hu, Q. L. Zhou, C. Politis, and Y. Sun, “An automatic optimization method for minimizing supporting structures in additive manufacturing,” Adv Manuf, vol. 8, no. 1, pp. 49–58, Mar. 2020, doi: 10.1007/s40436-019-00277-y.ChenX. J.HuJ. L.ZhouQ. L.PolitisC.SunY.“An automatic optimization method for minimizing supporting structures in additive manufacturing,”Adv Manuf814958Mar.202010.1007/s40436-019-00277-yOpen DOISearch in Google Scholar
V. Yannibelli, E. Pacini, D. Monge, C. Mateos, and G. Rodriguez, “A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud,” Sci Program, vol. 2020, 2020, doi: 10.1155/2020/4653204.YannibelliV.PaciniE.MongeD.MateosC.RodriguezG.“A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud,”Sci Program2020202010.1155/2020/4653204Open DOISearch in Google Scholar
R. Parayoga, A. Maria, and S. Asih, “Empirical study of MOPSO and NSGA II comparison inmulti-objective location routing problem incorporating the service level of delivery.”ParayogaR.MariaA.AsihS.“Empirical study of MOPSO and NSGA II comparison inmulti-objective location routing problem incorporating the service level of delivery.”Search in Google Scholar
B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algorithms: A Comprehensive Classification and Applications,” IEEE Access, vol. 7, pp. 133653–133667, 2019, doi: 10.1109/ACCESS.2019.2941229.JangB.KimM.HarerimanaG.KimJ. W.“Q-Learning Algorithms: A Comprehensive Classification and Applications,”IEEE Access7133653133667201910.1109/ACCESS.2019.2941229Open DOISearch in Google Scholar
A. I. Portoacă, R. G. Ripeanu, A. Diniță, and M. Tănase, “Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance,” Polymers (Basel), vol. 15, no. 16, Aug. 2023, doi: 10.3390/polym15163419.PortoacăA. I.RipeanuR. G.DinițăA.TănaseM.“Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance,”Polymers (Basel)1516Aug.202310.3390/polym15163419Open DOISearch in Google Scholar
H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Performance Comparison of NSGA-II and NSGA-III on Various Many-Objective Test Problems,” 2016.IshibuchiH.ImadaR.SetoguchiY.NojimaY.“Performance Comparison of NSGA-II and NSGA-III on Various Many-Objective Test Problems,”2016Search in Google Scholar
J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland), vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211573.HaoJ.YangX.WangC.TuR.ZhangT.“An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,”Applied Sciences (Switzerland)1222Nov.202210.3390/app122211573Open DOISearch in Google Scholar
2016 IEEE Congress on Evolutionary Computation (CEC). Institute of Electrical and Electronics Engineers (IEEE), 2016.2016 IEEE Congress on Evolutionary Computation (CEC). Institute of Electrical and Electronics Engineers (IEEE), 2016.Search in Google Scholar
D. Goh, S. L. Sing, and W. Y. Yeong, “A review on machine learning in 3D printing: applications, potential, and challenges,” Artif Intell Rev, vol. 54, no. 1, pp. 63–94, Jan. 2021, doi: 10.1007/s10462-020-09876-9.GohD.SingS. L.YeongW. Y.“A review on machine learning in 3D printing: applications, potential, and challenges,”Artif Intell Rev5416394Jan.202110.1007/s10462-020-09876-9Open DOISearch in Google Scholar
J. Du, R. Liu, D. Cheng, X. Wang, T. Zhang, and F. Yu, “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel), vol. 16, no. 8, Aug. 2024, doi: 10.3390/sym16081062.DuJ.LiuR.ChengD.WangX.ZhangT.YuF.“Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,”Symmetry (Basel)168Aug.202410.3390/sym16081062Open DOISearch in Google Scholar
X. Wen et al., “Effective Improved NSGA-II Algorithm for Multi-Objective Integrated Process Planning and Scheduling,” Mathematics, vol. 11, no. 16, p. 3523, Aug. 2023, doi: 10.3390/math11163523.WenX.“Effective Improved NSGA-II Algorithm for Multi-Objective Integrated Process Planning and Scheduling,”Mathematics11163523Aug.202310.3390/math11163523Open DOISearch in Google Scholar
R. Wu, R. Wang, J. Hao, Q. Wu, P. Wang, and D. Niyato, “Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II,” Jul. 2024, [Online]. Available: http://arxiv.org/abs/2407.13113WuR.WangR.HaoJ.WuQ.WangP.NiyatoD.“Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II,”Jul.2024[Online]. Available: http://arxiv.org/abs/2407.13113Search in Google Scholar
R. Chen, B. Wu, H. Wang, H. Tong, and F. Yan, “A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources.” [Online]. Available: https://ssrn.com/abstract=4822936ChenR.WuB.WangH.TongH.YanF.“A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources.”[Online]. Available: https://ssrn.com/abstract=4822936Search in Google Scholar
J. Du, R. Liu, D. Cheng, X. Wang, T. Zhang, and F. Yu, “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel), vol. 16, no. 8, Aug. 2024, doi: 10.3390/sym16081062.DuJ.LiuR.ChengD.WangX.ZhangT.YuF.“Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,”Symmetry (Basel)168Aug.202410.3390/sym16081062Open DOISearch in Google Scholar
J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland), vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211573.HaoJ.YangX.WangC.TuR.ZhangT.“An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,”Applied Sciences (Switzerland)1222Nov.202210.3390/app122211573Open DOISearch in Google Scholar