This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Lu, D., Mausel, P., Brondízio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25, 2365–2401 (2004). DOI: 10.1080/0143116031000139863.LuD.MauselP.BrondízioE.MoranE.Change detection techniquesInt. J. Remote Sens2523652401200410.1080/0143116031000139863Open DOISearch in Google Scholar
Bruzzone, L., Prieto, D.F.: An adaptive semi parametric and context-based approach to unsupervised change detection in multi-temporal remote-sensing images. IEEE Transactions on Image Processing. 11, 452–466 (2002). DOI: 10.1109/TIP.2002.999678.BruzzoneL.PrietoD.F.An adaptive semi parametric and context-based approach to unsupervised change detection in multi-temporal remote-sensing imagesIEEE Transactions on Image Processing11452466200210.1109/TIP.2002.999678Open DOISearch in Google Scholar
Gong, M., Zhao, J., Liu, J., Miao, Q., Jiao, L.: Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans Neural Network Learn Syst. 27, 125–138 (2016). DOI: 10.1109/TNNLS.2015.2435783.GongM.ZhaoJ.LiuJ.MiaoQ.JiaoL.Change Detection in Synthetic Aperture Radar Images Based on Deep Neural NetworksIEEE Trans Neural Network Learn Syst27125138201610.1109/TNNLS.2015.2435783Open DOISearch in Google Scholar
Gao, Y., Gao, F., Dong, J., Li, H.-C.: SAR Image Change Detection Based on Multiscale Capsule Network. IEEE Geoscience and Remote Sensing Letters. 18, 484–488 (2021). DOI: 10.1109/LGRS.2020.2977838.GaoY.GaoF.DongJ.LiH.-C.SAR Image Change Detection Based on Multiscale Capsule NetworkIEEE Geoscience and Remote Sensing Letters18484488202110.1109/LGRS.2020.2977838Open DOISearch in Google Scholar
Cheng, Y., Zhao, L., Chen, S., Li, X.: Hyperspectral Unmixing Network Accounting for Spectral Variability Based on a Modified Scaled and a Perturbed Linear Mixing Model. Remote Sens (Basel). 15, 3890 (2023). DOI: 10.3390/rs15153890.ChengY.ZhaoL.ChenS.LiX.Hyperspectral Unmixing Network Accounting for Spectral Variability Based on a Modified Scaled and a Perturbed Linear Mixing ModelRemote Sens (Basel)153890202310.3390/rs15153890Open DOISearch in Google Scholar
Bazi, Y., Bruzzone, L., Melgani, F.: Automatic Identification of the Number and Values of Decision Thresholds in the Log-Ratio Image for Change Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 3, 349–353 (2006). DOI: 10.1109/LGRS.2006.869973.BaziY.BruzzoneL.MelganiF.Automatic Identification of the Number and Values of Decision Thresholds in the Log-Ratio Image for Change Detection in SAR ImagesIEEE Geoscience and Remote Sensing Letters3349353200610.1109/LGRS.2006.869973Open DOISearch in Google Scholar
Geng, J., Ma, X., Zhou, X., Wang, H.: Saliency-Guided Deep Neural Networks for SAR Image Change Detection. IEEE Transactions on Geoscience and Remote Sensing. 57, 7365–7377 (2019). DOI: 10.1109/TGRS.2019.2913095.GengJ.MaX.ZhouX.WangH.Saliency-Guided Deep Neural Networks for SAR Image Change DetectionIEEE Transactions on Geoscience and Remote Sensing5773657377201910.1109/TGRS.2019.2913095Open DOISearch in Google Scholar
Inglada, J., Mercier, G.: A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis. IEEE Transactions on Geoscience and Remote Sensing. 45, 1432–1445 (2007). DOI: 10.1109/TGRS.2007.893568.IngladaJ.MercierG.A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change AnalysisIEEE Transactions on Geoscience and Remote Sensing4514321445200710.1109/TGRS.2007.893568Open DOISearch in Google Scholar
Du, Y., Zhong, R., Li, Q., Zhang, F.: TransUNet++SAR: Change Detection with Deep Learning about Architectural Ensemble in SAR Images. Remote Sens (Basel). 15, 6 (2022). DOI: 10.3390/rs15010006.DuY.ZhongR.LiQ.ZhangF.TransUNet++SAR: Change Detection with Deep Learning about Architectural Ensemble in SAR ImagesRemote Sens (Basel)156202210.3390/rs15010006Open DOISearch in Google Scholar
Samadi, F., Akbarizadeh, G., Kaabi, H.: Change detection in SAR images using deep belief net-work: a new training approach based on morphological images. IET Image Process. 13, 2255–2264 (2019). DOI: 10.1049/iet-ipr.2018.6248.SamadiF.AkbarizadehG.KaabiH.Change detection in SAR images using deep belief net-work: a new training approach based on morphological imagesIET Image Process1322552264201910.1049/iet-ipr.2018.6248Open DOISearch in Google Scholar
Gong, M., Li, Y., Jiao, L., Jia, M., Su, L.: SAR change detection based on intensity and texture changes. ISPRS Journal of Photogrammetry and Remote Sensing. 93, 123–135 (2014). DOI: 10.1016/j.isprsjprs.2014.04.010.GongM.LiY.JiaoL.JiaM.SuL.SAR change detection based on intensity and texture changesISPRS Journal of Photogrammetry and Remote Sensing93123135201410.1016/j.isprsjprs.2014.04.010Open DOISearch in Google Scholar
Adegun, A.A., Viriri, S., Tapamo, J.-R.: Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis. J Big Data. 10, 93 (2023). DOI: 10.1186/s40537-023-00772-x.AdegunA.A.ViririS.TapamoJ.-R.Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysisJ Big Data1093202310.1186/s40537-023-00772-xOpen DOISearch in Google Scholar
Wang, P., Zhang, H., Patel, V.M.: SAR Image Despeckling Using a Convolutional Neural Network. IEEE Signal Process Lett. 24, 1763–1767 (2017). DOI: 10.1109/LSP.2017.2758203.WangP.ZhangH.PatelV.M.SAR Image Despeckling Using a Convolutional Neural NetworkIEEE Signal Process Lett2417631767201710.1109/LSP.2017.2758203Open DOISearch in Google Scholar
Ramos, L.P., Costa, R.F. da, Medeiros, D. da S. de, Silva, P.B. da, Alves, D.I., Machado, R.: On the Effect of Imperfect Reference Images in SAR Change Detection Based on Bayes' Theorem. In: Anais do XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais. Sociedade Brasileira de Telecomunicações (2022). DOI: 10.14209/sbrt.2022.1570813069.RamosL.P.CostaR.F. daMedeirosD. da S. deSilvaP.B. daAlvesD.I.MachadoR.On the Effect of Imperfect Reference Images in SAR Change Detection Based on Bayes' TheoremIn:Anais do XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais. Sociedade Brasileira de Telecomunicações202210.14209/sbrt.2022.1570813069Open DOISearch in Google Scholar
Pollisetty Pravallika: Ship Tracking and Detection in SAR images using Deep Learning model. International Journal of Creative Research Thoughts. Vol. 10, (2022)Pollisetty PravallikaShip Tracking and Detection in SAR images using Deep Learning modelInternational Journal of Creative Research Thoughts102022Search in Google Scholar
Huiqin Chen, Fujun Zhao, Zeyuan Gu: SAR Image Change Detection Re-search: A Review. clausiuspress-Geoscience and Remote Sensing. Vol. 5, (2022).ChenHuiqinZhaoFujunGuZeyuanSAR Image Change Detection Re-search: A Reviewclausiuspress-Geoscience and Remote Sensing52022Search in Google Scholar
Shafique, A., Cao, G., Khan, Z., Asad, M., Aslam, M.: Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens (Basel). 14, 871 (2022). DOI: 10.3390/rs14040871.ShafiqueA.CaoG.KhanZ.AsadM.AslamM.Deep Learning-Based Change Detection in Remote Sensing Images: A ReviewRemote Sens (Basel)14871202210.3390/rs14040871Open DOISearch in Google Scholar
Bai, T., Wang, L., Yin, D., Sun, K., Chen, Y., Li, W., Li, D.: Deep learning for change detection in remote sensing: a review. Geo-spatial Information Science. 26, 262–288 (2023). DOI: 10.1080/10095020.2022.208 5633.BaiT.WangL.YinD.SunK.ChenY.LiW.LiD.Deep learning for change detection in remote sensing: a reviewGeo-spatial Information Science26262288202310.1080/10095020.2022.208 5633Open DOISearch in Google Scholar
Khelifi, L., Mignotte, M.: Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access. 8, 126385–126400 (2020). DOI: 10.1109/ACCESS.2020.3008036.KhelifiL.MignotteM.Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-AnalysisIEEE Access8126385126400202010.1109/ACCESS.2020.3008036Open DOISearch in Google Scholar
Li, L., Ma, H., Zhang, X., Zhao, X., Lv, M., Jia, Z.: Synthetic Aperture Radar Image Change Detection Based on Principal Component Analysis and Two-Level Clustering. Remote Sens (Basel). 16, 1861 (2024). DOI: 10.3390/rs16111861.LiL.MaH.ZhangX.ZhaoX.LvM.JiaZ.Synthetic Aperture Radar Image Change Detection Based on Principal Component Analysis and Two-Level ClusteringRemote Sens (Basel)161861202410.3390/rs16111861Open DOISearch in Google Scholar
Zhan, T., Dang, Q., Zhu, Y.: Neighborhood Difference-Based Self-Supervised Network for Detecting Small Changes From Synthetic Aperture Radar Images. IEEE Geoscience and Remote Sensing Letters. 21, 1–5 (2024). DOI: 10.1109/LGRS.2024.3415819.ZhanT.DangQ.ZhuY.Neighborhood Difference-Based Self-Supervised Network for Detecting Small Changes From Synthetic Aperture Radar ImagesIEEE Geoscience and Remote Sensing Letters2115202410.1109/LGRS.2024.3415819Open DOISearch in Google Scholar