Performance Comparison of Statistical vs. Neural-Based Translation System on Low-Resource Languages
, and
Aug 12, 2023
About this article
Article Category: Article
Published Online: Aug 12, 2023
Received: Feb 22, 2023
DOI: https://doi.org/10.2478/ijssis-2023-0007
Keywords
© 2023 Goutam Datta et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:

Figure 2:
![Encoder–decoder model with attention [3].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471fb66215d2f6c89db76dd/j_ijssis-2023-0007_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250907%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250907T081528Z&X-Amz-Expires=3600&X-Amz-Signature=bd04ba03fd8961794e8aab8aecc6a9c0dde214595f7aac07636c9e7c710f6691&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3:
![Transformer model [21].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471fb66215d2f6c89db76dd/j_ijssis-2023-0007_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250907%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250907T081528Z&X-Amz-Expires=3600&X-Amz-Signature=63e89ef27ff25f461bdab43b58169648b8e331933ed627abad3babe756f98157&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Attention-based NMT outperforms SMT for the Bengali–Hindi language pair (Das et al_ [32])
Attention-based NMT model | 20.41 | 25 |
MOSES (SMT) | 14.35 | - |
NMT outperformed SMT with transfer learning, ensemble, and further processing of data (Zopth et al_)
Hausa | 23.7 | 16.8 | 21.3 | 24.0 |
Turkish | 20.4 | 11.4 | 17.0 | 18.7 |
Uzbek | 17.9 | 10.7 | 14.4 | 16.8 |
Urdu | 17.9 | 5.2 | 13.8 | 14.5 |
NMT system with transformer model and BPE outperformed phrase-based SMT for English–Hindi and Hindi–English language pairs (Haque et al_ [33])
Eng.Hindi-PBSMT | 28.8 | 30.2 | 53.4 |
Eng.Hindi-NMT | 36.6 | 33.5 | 46.3 |
Hindi–Eng.PBSMT | 34.1 | 36.6 | 50.0 |
Hindi–Eng.NMT | 39.9 | 38.5 | 42.0 |
English–Hindi translation using different optimizers
Eng.–Hindi | Adam | 12.25 | NMT with attention | 14 |
Eng.–Hindi | SGD | 11.50 | NMT with attention | 14 |
Eng.–Hindi | 16.64 | MOSES |
English–Bengali translation BLEU scores using different optimizers
Eng.–Beng. | Adam | 10.78 | NMT with attention | 12 |
Eng.–Beng. | SGD | 11.17 | NMT with attention | 12 |
Eng.–Beng. | 14.58 | MOSES |
BLEU-1, 2, and 3 scores are summarized for Eng_–Beng_ and Eng_–Hindi language pairs using Adam- and SGD-Optimizers
BLEU-1 | 14.15 | 13.91 | 15.77 | 14.18 |
BLEU-2 | 12.65 | 13.11 | 14.12 | 13.33 |
BLEU-3 | 11.83 | 12.17 | 13.95 | 12.19 |
For various low-resource corpus SMT outperformed NMT (Ahmadnia et al_ [17])
Gnome | 20.54 | 15.49 | 17.26 | 18.76 |
KDE4 | 15.64 | 13.36 | 14.29 | 15.71 |
Subtitles | 18.82 | 18.62 | 19.51 | 22.54 |
Ubuntu | 16.76 | 14.27 | 15.14 | 15.87 |
Tanzil | 17.69 | 15.14 | 16.53 | 17.72 |
Overall | 17.06 | 15.25 | 16.67 | 17.32 |