Open Access

The ordinary negative changing refractive index for estimation of optical confinement factor


Cite

Akhtar, M. B. 2022. The use of a convolutional neural network in detecting soldering faults from a printed circuit board assembly. HighTech and Innovation Journal 3(1): 1–14. AkhtarM. B. 2022 The use of a convolutional neural network in detecting soldering faults from a printed circuit board assembly HighTech and Innovation Journal 3 1 1 14 10.28991/HIJ-2022-03-01-01 Search in Google Scholar

Alexander, K., George, J. P., Verbist, J., Neyts, K., Kuyken, B., Van Thourhout, D. and Beeckman, J. 2018. Nanophotonic Pockels modulators on a silicon nitride platform. Nature communications 9(1): 3444. AlexanderK. GeorgeJ. P. VerbistJ. NeytsK. KuykenB. Van ThourhoutD. BeeckmanJ. 2018 Nanophotonic Pockels modulators on a silicon nitride platform Nature communications 9 1 3444 10.1038/s41467-018-05846-6611076830150757 Search in Google Scholar

Bea, S. and Teich, M. 1991. Fundamentals of photonics, Wiley, New York, p. 313. BeaS. TeichM. 1991 Fundamentals of photonics Wiley New York 313 Search in Google Scholar

Boes, A., Corcoran, B., Chang, L., Bowers, J. and Mitchell, A. 2018. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser & Photonics Reviews 12(4): 1700256. BoesA. CorcoranB. ChangL. BowersJ. MitchellA. 2018 Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits Laser & Photonics Reviews 12 4 1700256 10.1002/lpor.201700256 Search in Google Scholar

Cai, L., Kang, Y. and Hu, H. 2016. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film. Optics Express 24(5): 4640–4647. CaiL. KangY. HuH. 2016 Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film Optics Express 24 5 4640 4647 10.1364/OE.24.00464029092292 Search in Google Scholar

Casson, J. L., Gahagan, K. T., Scrymgeour, D. and Jain, R. K. 2004. Electro-optic coefficients of lithium tantalate at near-infrared wavelengths. JOSA B 21(11): 1948–1952. CassonJ. L. GahaganK. T. ScrymgeourD. JainR. K. 2004 Electro-optic coefficients of lithium tantalate at near-infrared wavelengths JOSA B 21 11 1948 1952 10.1364/JOSAB.21.001948 Search in Google Scholar

Chang, L., Pfeiffer, M. H. P., Volet, N., Zervas, M., Peters, J. D., Manganelli, C. L., Stanton, E. J., Li, Y., Kippenberg, T. J. and Bowers, J. E. 2017. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Optics Letters 42(4): 803–806. ChangL. PfeifferM. H. P. VoletN. ZervasM. PetersJ. D. ManganelliC. L. StantonE. J. LiY. KippenbergT. J. BowersJ. E. 2017 Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon Optics Letters 42 4 803 806 10.1364/OL.42.00080328198869 Search in Google Scholar

Chang, L., Li, Y., Volet, N., Wang, L., Peters, J. and Bowers, J. E. 2016. Thin film wavelength converters for photonic integrated circuits. Optica 3(5): 531–535. ChangL. LiY. VoletN. WangL. PetersJ. BowersJ. E. 2016 Thin film wavelength converters for photonic integrated circuits Optica 3 5 531 535 10.1364/OPTICA.3.000531 Search in Google Scholar

Chen, L., Xu, Q., Wood, M. G. and Reano, R. M. 2014. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1(2): 112–118. ChenL. XuQ. WoodM. G. ReanoR. M. 2014 Hybrid silicon and lithium niobate electro-optical ring modulator Optica 1 2 112 118 10.1364/OPTICA.1.000112 Search in Google Scholar

Deshpande, R., Zenin, V. A., Ding, F., Mortensen, N. A. and Bozhevolnyi, S. I. 2018. Direct characterization of near-field coupling in gap plasmon-based metasurfaces. Nano Letters 18(10): 6265–6270. DeshpandeR. ZeninV. A. DingF. MortensenN. A. BozhevolnyiS. I. 2018 Direct characterization of near-field coupling in gap plasmon-based metasurfaces Nano Letters 18 10 6265 6270 10.1021/acs.nanolett.8b0239330216727 Search in Google Scholar

DeVault, C. T., Zenin, V. A., Pors, A., Chaudhuri, K., Kim, J., Boltasseva, A., Shalaev, V. M. and Bozhevolnyi, S. I. 2018. Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. Optica 5(12): 1557–1563. DeVaultC. T. ZeninV. A. PorsA. ChaudhuriK. KimJ. BoltassevaA. ShalaevV. M. BozhevolnyiS. I. 2018 Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates Optica 5 12 1557 1563 10.1364/OPTICA.5.001557 Search in Google Scholar

Figura, C. C. 2000. Second order nonlinear optics in ionically self-assembled thin films. PhD Dissertation, Virginia Tech. FiguraC. C. 2000 Second order nonlinear optics in ionically self-assembled thin films PhD Dissertation, Virginia Tech. Search in Google Scholar

Girouard, P., Chen, P., Jeong, Y. K., Liu, Z., Ho, S. and Wessels, B. W. 2017. X-2 modulator with 40-GHz modulation utilizing BaTiO3 photonic crystal waveguides. IEEE Journal of Quantum Electronics 53(4): 1–10. GirouardP. ChenP. JeongY. K. LiuZ. HoS. WesselsB. W. 2017 X-2 modulator with 40-GHz modulation utilizing BaTiO3 photonic crystal waveguides IEEE Journal of Quantum Electronics 53 4 1 10 10.1109/JQE.2017.2718222 Search in Google Scholar

Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R. and Günter, P. 2007. Electro–optically tunable microring resonators in lithium niobate. Nature Photonics 1(7): 407–410. GuarinoA. PoberajG. RezzonicoD. Degl’InnocentiR. GünterP. 2007 Electro–optically tunable microring resonators in lithium niobate Nature Photonics 1 7 407 410 10.1038/nphoton.2007.93 Search in Google Scholar

Hagn, G. 2001. Electro-optic effects and their application in indium phosphide waveguide devices for fibre optic access networks. PhD dissertation, ETH Zurich. HagnG. 2001 Electro-optic effects and their application in indium phosphide waveguide devices for fibre optic access networks PhD dissertation, ETH Zurich Search in Google Scholar

He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., Gao, S., Sun, S., Wen, X., Zhou, L., Liu, L., Guo, C., Chen, H., Yu, S., Liu, L. and Cai, X. 2019. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13(5): 359–364. HeM. XuM. RenY. JianJ. RuanZ. XuY. GaoS. SunS. WenX. ZhouL. LiuL. GuoC. ChenH. YuS. LiuL. CaiX. 2019 High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond Nature Photonics 13 5 359 364 10.1038/s41566-019-0378-6 Search in Google Scholar

Janner, D., Tulli, D., García-Granda, M., Belmonte, M. and Pruneri, V. 2009. Micro-structured integrated electro-optic LiNbO3 modulators. Laser & Photonics Reviews 3(3): 301–313. JannerD. TulliD. García-GrandaM. BelmonteM. PruneriV. 2009 Micro-structured integrated electro-optic LiNbO3 modulators Laser & Photonics Reviews 3 3 301 313 10.1002/lpor.200810073 Search in Google Scholar

Jin, S., Xu, L., Zhang, H. and Li, Y. 2015. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technology Letters 28(7): 736–739. JinS. XuL. ZhangH. LiY. 2015 LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides IEEE Photonics Technology Letters 28 7 736 739 10.1109/LPT.2015.2507136 Search in Google Scholar

Korkishko, Y. N., Fedorov, V., De Micheli, M., Baldi, P., El Hadi, K. and Leycuras, A. 1996. Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate. Applied Optics, 35(36): 7056–7060. KorkishkoY. N. FedorovV. De MicheliM. BaldiP. El HadiK. LeycurasA. 1996 Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate Applied Optics 35 36 7056 7060 10.1364/AO.35.00705621151307 Search in Google Scholar

Lu, H., Sadani, B., Ulliac, G., Courjal, N., Guyot, C., Merolla, J.-M., Collet, M., Baida, F. I. and Bernal, M.-P. 2012a. 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity. Optics Express 20(19): 20884–20893. LuH. SadaniB. UlliacG. CourjalN. GuyotC. MerollaJ.-M. ColletM. BaidaF. I. BernalM.-P. 2012a 6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity Optics Express 20 19 20884 20893 10.1364/OE.20.02088423037212 Search in Google Scholar

Lu, H., Sadani, B., Courjal, N., Ulliac, G., Smith, N., Stenger, V., Collet, M., Baida, F. I. and Bernal, M.-P. 2012b. Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film. Optics Express 20(3): 2974–2981. LuH. SadaniB. CourjalN. UlliacG. SmithN. StengerV. ColletM. BaidaF. I. BernalM.-P. 2012b Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film Optics Express 20 3 2974 2981 10.1364/OE.20.00297422330535 Search in Google Scholar

Luff, B. J., Wilkinson, J. S., Piehler, J., Hollenbach, U., Ingenhoff, J. and Fabricius, N. 1998. Integrated optical Mach–Zehnder biosensor, in. Journal of Lightwave Technology 16(4): 583–592. LuffB. J. WilkinsonJ. S. PiehlerJ. HollenbachU. IngenhoffJ. FabriciusN. 1998 Integrated optical Mach–Zehnder biosensor in Journal of Lightwave Technology 16 4 583 592 10.1109/50.664067 Search in Google Scholar

Maldonado, T. A. 1995. Electro-optic modulators. Handbook of optics 2: 13–11. MaldonadoT. A. 1995 Electro-optic modulators Handbook of optics 2 13 11 Search in Google Scholar

Mercante, A. J., Shi, S., Yao, P., Xie, L., Weikle, R. M. and Prather, D. W. 2018. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Optics Express 26(11): 14810–14816. MercanteA. J. ShiS. YaoP. XieL. WeikleR. M. PratherD. W. 2018 Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth Optics Express 26 11 14810 14816 10.1364/OE.26.01481029877417 Search in Google Scholar

Poberaj, G., Hu, H., Sohler, W. and Guenter, P. 2012. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser & photonics reviews 6(4): 488–503. PoberajG. HuH. SohlerW. GuenterP. 2012 Lithium niobate on insulator (LNOI) for micro-photonic devices Laser & photonics reviews 6 4 488 503 10.1002/lpor.201100035 Search in Google Scholar

Priscilla, S. J., Judi, V. A., Daniel, R. and Sivaji, K. 2020. Effects of chromium doping on the electrical properties of ZnO nanoparticles. Emerging Science Journal 4(2): 82–88. PriscillaS. J. JudiV. A. DanielR. SivajiK. 2020 Effects of chromium doping on the electrical properties of ZnO nanoparticles Emerging Science Journal 4 2 82 88 10.28991/esj-2020-01212 Search in Google Scholar

Qi, Y. and Li, Y. 2020. Integrated lithium niobate photonics, Nanophotonics, 9(6): 1287–1320. QiY. LiY. 2020 Integrated lithium niobate photonics Nanophotonics 9 6 1287 1320 10.1515/nanoph-2020-0013 Search in Google Scholar

Rao, A., Patil, A., Rabiei, P., Honardoost, A., DeSalvo, R., Paolella, A. and Fathpour, S. 2016. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Optics Letters 41(24): 5700–5703. RaoA. PatilA. RabieiP. HonardoostA. DeSalvoR. PaolellaA. FathpourS. 2016 High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz Optics Letters 41 24 5700 5703 10.1364/OL.41.00570027973493 Search in Google Scholar

Rao, A. and Fathpour, S. 2017. Compact lithium niobate electrooptic modulators. IEEE Journal of Selected Topics in Quantum Electronics 24(4): 1–14. RaoA. FathpourS. 2017 Compact lithium niobate electrooptic modulators IEEE Journal of Selected Topics in Quantum Electronics 24 4 1 14 10.1109/JSTQE.2017.2779869 Search in Google Scholar

Roussey, M., Baida, F. I. and Bernal, M.-P. 2007. Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal. JOSA B 24(6): 1416–1422. RousseyM. BaidaF. I. BernalM.-P. 2007 Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal JOSA B 24 6 1416 1422 10.1364/JOSAB.24.001416 Search in Google Scholar

Roussey, M., Bernal, M.-P., Courjal, N., Van Labeke, D., Baida, F. and Salut, R. 2006. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Applied physics letters 89(24): 241110. RousseyM. BernalM.-P. CourjalN. Van LabekeD. BaidaF. SalutR. 2006 Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons Applied physics letters 89 24 241110 10.1063/1.2402946 Search in Google Scholar

Scharnberg, A. A., de Loreto, A. C. and Alves, A. K. 2020. Optical and structural characterization of Bi2FexNbO7 nanoparticles for environmental applications. Emerging Science Journal 4(1): 11–17. ScharnbergA. A. de LoretoA. C. AlvesA. K. 2020 Optical and structural characterization of Bi2FexNbO7 nanoparticles for environmental applications Emerging Science Journal 4 1 11 17 10.28991/esj-2020-01205 Search in Google Scholar

Sulser, F., Poberaj, G., Koechlin, M. and Günter, P. 2009. Photonic crystal structures in ion-sliced lithium niobate thin films. Optics Express 17(22): 20291–20300. SulserF. PoberajG. KoechlinM. GünterP. 2009 Photonic crystal structures in ion-sliced lithium niobate thin films Optics Express 17 22 20291 20300 10.1364/OE.17.02029119997255 Search in Google Scholar

Tavlykaev, R. F. and Ramaswamy, R. V. 1999. Highly linear Y-fed directional coupler modulator with low intermodulation distortion. Journal of Lightwave Technology 17(2): 282. TavlykaevR. F. RamaswamyR. V. 1999 Highly linear Y-fed directional coupler modulator with low intermodulation distortion Journal of Lightwave Technology 17 2 282 10.1109/50.744238 Search in Google Scholar

Thomaschewski, M., Zenin, V. A., Wolff, C. and Bozhevolnyi, S. I. 2020. Plasmonic monolithic lithium niobate directional coupler switches. Nature Communications 11(1): 1–6. ThomaschewskiM. ZeninV. A. WolffC. BozhevolnyiS. I. 2020 Plasmonic monolithic lithium niobate directional coupler switches Nature Communications 11 1 1 6 10.1038/s41467-020-14539-y700515632029717 Search in Google Scholar

Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P. and Lončar, M. 2018. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725): 101–104. WangC. ZhangM. ChenX. BertrandM. Shams-AnsariA. ChandrasekharS. WinzerP. LončarM. 2018 Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages Nature 562 7725 101 104 10.1038/s41586-018-0551-y30250251 Search in Google Scholar

Wang, X., Weigel, P. O., Zhao, J., Ruesing, M. and Mookherjea, S. 2019. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics 4(9): 096101. WangX. WeigelP. O. ZhaoJ. RuesingM. MookherjeaS. 2019 Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate APL Photonics 4 9 096101 10.1063/1.5115243 Search in Google Scholar

Weigel, P. O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A. T., Starbuck, A. L., DeRose, C. T., Lentine, A. L., Rebeiz, G. and Mookherjea, S. 2018. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Optics Express 26(18): 23728–23739. WeigelP. O. ZhaoJ. FangK. Al-RubayeH. TrotterD. HoodD. MudrickJ. DalloC. PomereneA. T. StarbuckA. L. DeRoseC. T. LentineA. L. RebeizG. MookherjeaS. 2018 Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth Optics Express 26 18 23728 23739 10.1364/OE.26.02372830184869 Search in Google Scholar

Wooten, E. L., Kissa, K. M., Yi-Yan, A., Murphy, E. J., Lafaw, D. A., Hallemeier, P. F., Maack, D., Attanasio, D. V., Fritz, D. J., McBrien, G. J. and Bossi, D. E. 2000. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics 6(1): 69–82. WootenE. L. KissaK. M. Yi-YanA. MurphyE. J. LafawD. A. HallemeierP. F. MaackD. AttanasioD. V. FritzD. J. McBrienG. J. BossiD. E. 2000 A review of lithium niobate modulators for fiber-optic communications systems IEEE Journal of Selected Topics in Quantum Electronics 6 1 69 82 10.1109/2944.826874 Search in Google Scholar

Xu, M., Chen, W., He, M., Wen, X., Ruan, Z., Xu, J., Chen, L., Liu, L., Yu, S. and Cai, X. 2019. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics 4(10): 100802. XuM. ChenW. HeM. WenX. RuanZ. XuJ. ChenL. LiuL. YuS. CaiX. 2019 Michelson interferometer modulator based on hybrid silicon and lithium niobate platform APL Photonics 4 10 100802 10.1063/1.5115136 Search in Google Scholar

Xu, M., He, M., Zhang, H., Jian, J., Pan, Y., Liu, X., Chen, L., Meng, X., Chen, X., Li, Z., Xiao, X., Yu, S. and Cai, X. 2020. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nature Communications 11(1): 1–7. XuM. HeM. ZhangH. JianJ. PanY. LiuX. ChenL. MengX. ChenX. LiZ. XiaoX. YuS. CaiX. 2020 High-performance coherent optical modulators based on thin-film lithium niobate platform Nature Communications 11 1 1 7 10.1038/s41467-020-17806-0741101532764622 Search in Google Scholar

Yi-Yan, A. 1983. Index instabilities in proton-exchanged LiNbO3 waveguides. Applied Physics Letters, 42,(8): 633–635. Yi-YanA. 1983 Index instabilities in proton-exchanged LiNbO3 waveguides Applied Physics Letters 42 8 633 635 10.1063/1.94055 Search in Google Scholar

Zenin, V. A., Choudhury, S., Saha, S., Shalaev, V. M., Boltasseva, A. and Bozhevolnyi, S. I. 2017. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. Optics Express 25(11): 12295–12302. ZeninV. A. ChoudhuryS. SahaS. ShalaevV. M. BoltassevaA. BozhevolnyiS. I. 2017 Hybrid plasmonic waveguides formed by metal coating of dielectric ridges Optics Express 25 11 12295 12302 10.1364/OE.25.01229528786587 Search in Google Scholar

Zenin, V. A., Volkov, V. S., Han, Z., Bozhevolnyi, S. I., Devaux, E. and Ebbesen, T. W. 2012. Directional coupling in channel plasmon-polariton waveguides. Optics Express 20(6): 6124–6134. ZeninV. A. VolkovV. S. HanZ. BozhevolnyiS. I. DevauxE. EbbesenT. W. 2012 Directional coupling in channel plasmon-polariton waveguides Optics Express 20 6 6124 6134 10.1364/OE.20.00612422418492 Search in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other