Open Access

Biofilm formation capacity of Bacillus cereus on silicone, polyethylene terephthalate, Teflon, and aluminium food contact materials


Cite

[1] Bohinc K, Jevšnik M, Fink R, Dražič G. Raspor P. Surface characteristics dictate microbial adhesion ability. V: Prokopovich P. ed. Biological and pharmaceutical applications of nanomaterials. Forida: CRC Press; 2015. p. 193-214.Search in Google Scholar

[2] Fink R. Higienically Relevant Biofilms. New York: Nova Science Publishers; 2015.Search in Google Scholar

[3] Hayrapetyan H, Muller L, Tempelaars M, Abee T, Nierop Groot M. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. Int J Food Microbiol. 2015;200:72-9.10.1016/j.ijfoodmicro.2015.02.005Search in Google Scholar

[4] Wang H, Ding S, Wang G, Xu X, Zhou G. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. Int J Food Microbiol. 2013;167(3):293-302.10.1016/j.ijfoodmicro.2013.10.005Search in Google Scholar

[5] Al Meslmani BM, Mahmoud GF, Leichtweiß T, Strehlow B, Sommer FO, Lohoff MD, Bakowsky U. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens. Mat Sci Eng. 2016;58:78-87.10.1016/j.msec.2015.08.001Search in Google Scholar

[6] Fink R, Oder M, Stražar E, Filip S. Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control. 2017;80:267-72.10.1016/j.foodcont.2017.05.009Search in Google Scholar

[7] El-Arabi TF, Griffiths MW. Bacillus cereus. V: Glenn Morris J Jr., Potter ME, eds. Foodborne infections and intoxications. San Diego: Academic Press; 2013. p. 401-7.10.1016/B978-0-12-416041-5.00029-9Search in Google Scholar

[8] Tewari A, Abdullah S. Bacillus cereus food poisoning: international and Indian perspective. J Food Sci Technol. 2014;52(5):2500-11.10.1007/s13197-014-1344-4Search in Google Scholar

[9] Elhariry HM. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: Cabbage and lettuce. Food Microbiol. 2011;28(7):1266-74.10.1016/j.fm.2011.05.004Search in Google Scholar

[10] Lemos M, Gomes I, Mergulhao F, Melo L,Simoes M. The effects of surface type on the removal of Bacillus cereus and Pseudomonas fluorescens single and dual species biofilms. Food Bioprod Process. 2015;93:234-41.10.1016/j.fbp.2014.08.009Search in Google Scholar

[11] Tauveron G, Slomianny C, Henry C, Faille C. Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment. Int J Food Microbiol. 2006; 110(3):254-62.10.1016/j.ijfoodmicro.2006.04.027Search in Google Scholar

[12] Peng JS, Tsai WC, Chou CC. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int J Food Microbiol. 2001;65(1–2): 105-11.10.1016/S0168-1605(00)00517-1Search in Google Scholar

[13] Ekman J, Tsitko I, Weber A, Nielsen-LeRoux C, Lereclus D, Salkinoja-Salonen M. Transfer of Bacillus cereus spores from packaging paper into food. J Food Protect. 2009;72(11):2236-42.10.4315/0362-028X-72.11.223619903384Search in Google Scholar

[14] Le Gentil C, Sylla Y, Faille C. Bacterial re-contamination of surfaces of food processing lines during cleaning in place procedures. J Food Eng. 2010;96(1):37-42.10.1016/j.jfoodeng.2009.06.040Search in Google Scholar

[15] European Food Safety Authority (EFSA). Panel on Biological Hazards. Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA Journal; 2016.Search in Google Scholar

[16] Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J BiosciBioeng. 2008;106(4):381-6.10.1263/jbb.106.38119000615Search in Google Scholar

[17] Azeredo J, Azevedo NF, Briandet R et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43(3):313-51.10.1080/1040841X.2016.120814627868469Search in Google Scholar

[18] Abbas AA, Planchon S, Jobin M, Schmitt P. A new chemically defined medium for the growth and sporulation of Bacillus cereus strains in anaerobiosis. J Microbiol Meth. 2014;105:54-8.10.1016/j.mimet.2014.07.00625019521Search in Google Scholar

[19] Giaouris EE, Simoes MV. Pathogenic biofilm formation in the food industry and alternative control strategies. V: Holban AM, Grumezescu AM, eds. Foodborne Diseases. Cambridge: Academic Press; 2018. p. 309-77.10.1016/B978-0-12-811444-5.00011-7Search in Google Scholar

[20] Nieto Pozo I, Olmos D, Orgaz B, Božanić DK, González-Benito J. Titania nanoparticles prevent development of Pseudomonas fluorescens biofilms on polystyrene surfaces. Mater Lett. 2014;127(0):1-3.10.1016/j.matlet.2014.04.073Search in Google Scholar

[21] Shaheen R, Svensson B, Andersson MA, Christiansson A, Salkinoja-Salonen M. Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiol. 2010;27(3):347-55.10.1016/j.fm.2009.11.00420227599Search in Google Scholar

[22] Kolari M, Nuutinen J, Salkinoja-Salonen M. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcusgeothermalis. J IndMicrobiolBiot. 2001;27(6):343-51.10.1038/sj.jim.700020111773998Search in Google Scholar

[23] Kumari S, Sarkar PK. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control. 2016;69:20-9.10.1016/j.foodcont.2016.04.012Search in Google Scholar

[24] Kurinčič M, Jeršek B, Klančnik A, Možina SS, Fink R, Dražić G, Raspor P, Bohinc K. Effects of natural antimicrobials on bacterial cell hydro-phobicity, adhesion, and zeta potential. ArhHig Rada Toksikol. 2016; 67(1):39-45.10.1515/aiht-2016-67-272027092638Search in Google Scholar

[25] Luo K, Kim SY, Wang J, Oh DH. A combined hurdle approach of slightly acidic electrolyzed water simultaneous with ultrasound to inactivate Bacillus cereus on potato. LWT Food Sci Technol. 2016;73:615.10.1016/j.lwt.2016.04.016Search in Google Scholar