This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Arsal, G., Eccles, D. W., & Ericsson, K. A. (2016). Cognitive mediation of putting: Use of a think-aloud measure and implications for studies of golf-putting in the laboratory. Psychology of Sport and Exercise, 27, 18–27. https://doi.org/10.1016/j.psychsport.2016.07.008ArsalG.EcclesD. W.EricssonK. A.2016Cognitive mediation of putting: Use of a think-aloud measure and implications for studies of golf-putting in the laboratoryPsychology of Sport and Exercise271827https://doi.org/10.1016/j.psychsport.2016.07.008Search in Google Scholar
Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists?. Sports Biomechanics, 6(2), 224–243. https://doi.org/10.1080/14763140701322994BartlettR.WheatJ.RobinsM.2007Is movement variability important for sports biomechanists?Sports Biomechanics62224243https://doi.org/10.1080/14763140701322994Search in Google Scholar
Bosch, S., Shoaib, M., Geerlings, S., Buit, L., Meratnia, N., & Havinga, P. (2015). Analysis of indoor rowing motion using wearable inertial sensors. Proceedings of the 10th EAI International Conference on Body Area Networks, 233–239. http://dx.doi.org/10.4108/eai.28-9-2015.2261465BoschS.ShoaibM.GeerlingsS.BuitL.MeratniaN.HavingaP.2015Analysis of indoor rowing motion using wearable inertial sensorsProceedings of the 10th EAI International Conference on Body Area Networks233239http://dx.doi.org/10.4108/eai.28-9-2015.2261465Search in Google Scholar
Bunker, R., & Susnjak, T. (2022). The application of machine learning techniques for predicting match results in team sport: A review. Journal of Artificial Intelligence Research, 73, 1285–1322. https://doi.org/10.1613/jair.1.13509BunkerR.SusnjakT.2022The application of machine learning techniques for predicting match results in team sport: A reviewJournal of Artificial Intelligence Research7312851322https://doi.org/10.1613/jair.1.13509Search in Google Scholar
Chen, C. C., Lin, C. S., Chen, Y. T., Chen, W. H., Chen, C. H., & Chen, I. C. (2023). Intelligent performance evaluation in rowing sport using a graph-matching network. Journal of Imaging, 9(9), 181. https://doi.org/10.3390/jimaging9090181ChenC. C.LinC. S.ChenY. T.ChenW. H.ChenC. H.ChenI. C.2023Intelligent performance evaluation in rowing sport using a graph-matching networkJournal of Imaging99181https://doi.org/10.3390/jimaging9090181Search in Google Scholar
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. https://doi.org/10.48550/arXiv.1409.1259ChoK.Van MerriënboerB.BahdanauD.BengioY.2014On the properties of neural machine translation: Encoder-decoder approachesarXiv preprint arXiv:1409.1259. https://doi.org/10.48550/arXiv.1409.1259Search in Google Scholar
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555ChungJ.GulcehreC.ChoK.BengioY.2014Empirical evaluation of gated recurrent neural networks on sequence modelingarXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555Search in Google Scholar
Cordo, P. J., & Gurfinkel, V. S. (2004). Motor coordination can be fully understood only by studying complex movements. In Progress in Brain Research (Vol. 143, pp. 29–38). Elsevier. https://doi.org/10.1016/S0079-6123(03)43003-3CordoP. J.GurfinkelV. S.2004Motor coordination can be fully understood only by studying complex movementsInProgress in Brain Research1432938Elsevierhttps://doi.org/10.1016/S0079-6123(03)43003-3Search in Google Scholar
Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performance. Journal of Sports Sciences, 37(5), 568–600. https://doi.org/10.1080/02640414.2018.1521769CustE. E.SweetingA. J.BallK.RobertsonS.2019Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performanceJournal of Sports Sciences375568600https://doi.org/10.1080/02640414.2018.1521769Search in Google Scholar
Herrebrøden, H., Jensenius, A. R., Espeseth, T., Bishop, L., & Vuoskoski, J. K. (2023). Cognitive load causes kinematic changes in both elite and non-elite rowers. Human Movement Science, 90, 103113. https://doi.org/10.1016/j.humov.2023.103113HerrebrødenH.JenseniusA. R.EspesethT.BishopL.VuoskoskiJ. K.2023Cognitive load causes kinematic changes in both elite and non-elite rowersHuman Movement Science90103113https://doi.org/10.1016/j.humov.2023.103113Search in Google Scholar
Horvat, T., & Job, J. (2020). The use of machine learning in sport outcome prediction: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5), e1380. https://doi.org/10.1002/widm.1380HorvatT.JobJ.2020The use of machine learning in sport outcome prediction: A reviewWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery105e1380https://doi.org/10.1002/widm.1380Search in Google Scholar
Kleshnev, V. (2005). Comparison of on-water rowing with its simulation on Concept2 and Rowperfect machines. International Symposium on Biomechanics in Sports, Conference Proceedings Archive, 23.https://ojs.ub.uni-konstanz.de/cpa/article/view/853KleshnevV.2005Comparison of on-water rowing with its simulation on Concept2 and Rowperfect machinesInternational Symposium on Biomechanics in Sports, Conference Proceedings Archive, 23https://ojs.ub.uni-konstanz.de/cpa/article/view/853Search in Google Scholar
Knudson, D. (1999). Validity and reliability of visual ratings of the vertical jump. Perceptual and Motor Skills, 89(2), 642–648. https://doi.org/10.2466/pms.1999.89.2.642KnudsonD.1999Validity and reliability of visual ratings of the vertical jumpPerceptual and Motor Skills892642648https://doi.org/10.2466/pms.1999.89.2.642Search in Google Scholar
Lorenz D. S., Reiman M. P., Lehecka B. J., Naylor A. (2013). What performance characteristics determine elite versus nonelite athletes in the same sport? Sports Health, 5(6), 542–547. https://doi.org/10.1177/1941738113479763LorenzD. S.ReimanM. P.LeheckaB. J.NaylorA.2013What performance characteristics determine elite versus nonelite athletes in the same sport?Sports Health56542547https://doi.org/10.1177/1941738113479763Search in Google Scholar
Rico-González, M., Pino-Ortega, J., Méndez, A., Clemente, F., & Baca, A. (2023). Machine learning application in soccer: a systematic review. Biology of Sport, 40(1), 249–263. https://doi.org/10.5114/biolsport.2023.112970Rico-GonzálezM.Pino-OrtegaJ.MéndezA.ClementeF.BacaA.2023Machine learning application in soccer: a systematic reviewBiology of Sport401249263https://doi.org/10.5114/biolsport.2023.112970Search in Google Scholar
Rindal, O. M. H., Seeberg, T. M., Tjønnås, J., Haugnes, P., & Sandbakk, Ø. (2017). Automatic classification of sub-techniques in classical cross-country skiing using a machine learning algorithm on micro-sensor data. Sensors, 18(1), 75. https://doi.org/10.3390/s18010075RindalO. M. H.SeebergT. M.TjønnåsJ.HaugnesP.SandbakkØ.2017Automatic classification of sub-techniques in classical cross-country skiing using a machine learning algorithm on micro-sensor dataSensors18175https://doi.org/10.3390/s18010075Search in Google Scholar
Ross, G. B., Dowling, B., Troje, N. F., Fischer, S. L., & Graham, R. B. (2020). Classifying elite from novice athletes using simulated wearable sensor data. Frontiers in Bioengineering and Biotechnology, 8, 814. https://doi.org/10.3389/fbioe.2020.00814RossG. B.DowlingB.TrojeN. F.FischerS. L.GrahamR. B.2020Classifying elite from novice athletes using simulated wearable sensor dataFrontiers in Bioengineering and Biotechnology8814https://doi.org/10.3389/fbioe.2020.00814Search in Google Scholar
Smith, R. M., & Loschner, C. (2002). Biomechanics feedback for rowing. Journal of Sports Sciences, 20(10), 783–791. https://doi.org/10.1080/026404102320675639SmithR. M.LoschnerC.2002Biomechanics feedback for rowingJournal of Sports Sciences2010783791https://doi.org/10.1080/026404102320675639Search in Google Scholar
Soper, C., & Hume, P. A. (2004). Towards an ideal rowing technique for performance. Sports Medicine, pp. 825–848. https://doi.org/10.2165/00007256-200434120-00003SoperC.HumeP. A.2004Towards an ideal rowing technique for performanceSports Medicine825848https://doi.org/10.2165/00007256-200434120-00003Search in Google Scholar
Ste-Marie, D. M., Lelievre, N., & St. Germain, L. (2020). Revisiting the applied model for the use of observation: a review of articles spanning 2011–2018. Research Quarterly for Exercise and Sport, 91(4), 594–617. https://doi.org/10.1080/02701367.2019.1693489Ste-MarieD. M.LelievreN.St. GermainL.2020Revisiting the applied model for the use of observation: a review of articles spanning 2011–2018Research Quarterly for Exercise and Sport914594617https://doi.org/10.1080/02701367.2019.1693489Search in Google Scholar
Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: a systematic review. Journal of Experimental Orthopaedics, 8, 1–15. https://doi.org/10.1186/s40634-021-00346-xVan EetveldeH.MendonçaL. D.LeyC.SeilR.TischerT.2021Machine learning methods in sport injury prediction and prevention: a systematic reviewJournal of Experimental Orthopaedics8115https://doi.org/10.1186/s40634-021-00346-xSearch in Google Scholar
Williams, A. M., & Ericsson, K. A. (2005). Perceptual-cognitive expertise in sport: Some considerations when applying the expert performance approach. Human Movement Science, 24(3), 283–307. https://doi.org/10.1016/j.humov.2005.06.002WilliamsA. M.EricssonK. A.2005Perceptual-cognitive expertise in sport: Some considerations when applying the expert performance approachHuman Movement Science243283307https://doi.org/10.1016/j.humov.2005.06.002Search in Google Scholar
Wood, D., Reid, M., Elliot, B., Alderson, J., & Mian, A. (2023). The expert eye? An inter-rater comparison of elite tennis serve kinematics and performance. Journal of Sports Sciences, 41(19), 1779–1786. https://doi.org/10.1080/02640414.2023.2298102WoodD.ReidM.ElliotB.AldersonJ.MianA.2023The expert eye? An inter-rater comparison of elite tennis serve kinematics and performanceJournal of Sports Sciences411917791786https://doi.org/10.1080/02640414.2023.2298102Search in Google Scholar