1. bookVolume 20 (2021): Issue 1 (July 2021)
Journal Details
License
Format
Journal
eISSN
1684-4769
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Comparison of the Evaluation of Performance Preconditions in Tennis with the Use of Equal and Expertly Judged Criteria Weights

Published Online: 10 Aug 2021
Volume & Issue: Volume 20 (2021) - Issue 1 (July 2021)
Page range: 79 - 91
Journal Details
License
Format
Journal
eISSN
1684-4769
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

Tennis performance is influenced by various factors, among which physical performance factors play an important role. The aim of the study was an analysis of possibilities of the use of Saaty’s method for assessing the level of performance prerequisites and comparing the results obtained using equal weights and various weights. The research on Czech female players (U12; n = 211) was based on the results of the TENDIAG1 test battery (9 items) and the results were processed by FuzzME software and relevant statistical methods (correlation coefficient r, Student´s t-test, effect size index d). The results of Saaty’s method show that the most important athletic performance criteria for tennis coaches are the leg reaction time and the running speed, while the least important are endurance and strength. The evaluation using various criteria weights offers a finer scale for assessing athletes’ performance prerequisites despite the proven high degree of association between the results obtained with equal and various weights and the insignificant difference of mean values. The results have shown possibilities for the use of a fuzzy approach in sports practice and motivate further research towards broadening the structure or the number of evaluation criteria.

Keywords

Ahamad, G., Naqvi, K., & Beg, S. (2013). A Model for Talent Identification In Cricket Based on OWA Operator. International Journal of Information Technology & Management Information System, 4(2), 40–55. Search in Google Scholar

Ahmed, F., & Kilic, K. (2019). Fuzzy Analytic Hierarchy Process: A performance analysis of various algorithms. Fuzzy Sets and Systems, 362, 10–128. https://doi.org/10.1016/j.fss.2018.08.00910.1016/j.fss.2018.08.009 Search in Google Scholar

Ağılönü, A., & Balli, S. (2009). Developing computer aided model for selecting talent players in badminton. International Journal of Human Sciences, 6(2), 293–301. Search in Google Scholar

Bottoni, A., Giafelici, A., Tamburri, R., & Faina, M. (2011). Talent selection criteria for Olympic distance triathlon. Journal of Human Sport & Exercise, 6(2), 293–304.10.4100/jhse.2011.62.09 Search in Google Scholar

Božić-Štulić, D., Kruzic, S., Gotovac, S., & Papić, V. (2018). Complete Model for Automatic Object Detection and Localisation on Aerial Images using Convolutional Neural Networks. Journal of Communications Software and Systems, 14(1), 82–90. https://doi.org/10.24138/jcomss.v14i1.44110.24138/jcomss.v14i1.441 Search in Google Scholar

Budak, G., Kara, I., & Tansel, Y., I. (2017). Weighting the positions and skills of volleyball sport by using AHP: a real life application. Journal of Sports and Physical Education. 4(1), 23–29.10.9790/6737-0401012329 Search in Google Scholar

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, N. J.: L. Erlbaum Associates. Search in Google Scholar

Couceiro, M., Martins, F., Clement, F., Dias, G., & Mendes, R. (2014). On fuzzy approach for the evaluation of golf players. Maejo International Journal of Science and Technology, 8(01), 86–99. Search in Google Scholar

Das, S., Chowdhury, S. R., & Saha, H. (2012). Accuracy Enhancement in a Fuzzy Expert Decision Making System Through Appropriate Determination of Membership Functions and Its Application in a Medical Diagnostic Decision Making System. Journal of Medical Systems, 36(3), 1607–1620.10.1007/s10916-010-9623-821107889 Search in Google Scholar

Durović, N., Dizdar, D., & Zagorac, N. (2015). Importance of Hierarchical Structure Determining Tennis Performance for Modern Defensive Baseliner. Collegium Antropologicum, 39, Suppl. 1, 103–108. Search in Google Scholar

Fernandez-Fernandez, J., Ulbricht, A., & Ferrauti, A. (2014). Fitness testing of tennis players: How valuable is it? British Journal of Sports Medicine, 48, 22–31.10.1136/bjsports-2013-093152399522824668375 Search in Google Scholar

Ferrauti, A., Maier, P., & Weber, K. (2014). Handbuch für Tennistraining: Leistung, Athletik, Gesundheit. Aachen: Meyer & Meyer. Search in Google Scholar

Filipčič, A., & Filipčič, T. (2005). The relationship of tennis-specific motor abilities and the competition efficiency of young female tennis players. Kinesiology, 37(2), 164–172. Search in Google Scholar

Güllich A., & Krüger M. (2013). Sport. Das Lehrbuch für das Sportstudium. Berlin: Springer-Verlag.10.1007/978-3-642-37546-0 Search in Google Scholar

Hohmann, A., Lames, M., & Letzelter, M. (2007). Einführung in die Trainingswissenschaft. Wiebelsheim: Limpert Verlag. Search in Google Scholar

Holeček, P., & Talašová, J. (2010). FuzzME: A new software for multiple-criteria fuzzy evaluation. Acta Universitatis Matthiae Belii ser. Mathematics, 16, 35–51. Search in Google Scholar

Hubáček, O., Zháněl, J., & Polách, M. (2015). Comparison of probabilistic and fuzzy approach to evaluating condition performance level in tennis. Kinesiologia Slovenica Journal, 21(1), 26–36. Search in Google Scholar

Leist, K.-H. (1996). Fuzzy: Modellierung verschiedenartigen Systeme und Prozesse unter Heranziehung unscharfer Mengen, Analyse und Verarbeitung unscharfer Daten. Perspektiven einer kurzfristigen Einarbeitung. In Quade, K. (Red.). Anwendungen der Fuzzy-Logik und Neuronaler Systeme, 19–21. Köln: Bundesinstitut für Sportwissenschaft, Sport und Buch Strauss. Search in Google Scholar

Nasiri, M., M., Ranjbar, M., Tavana, M., Arteaga, F., J., S., & Yazdanparast, R. (2019). A novel hybrid method for selecting soccer players during transfer season. Expert systems. 36, 1–19.10.1111/exsy.12342 Search in Google Scholar

Noori, M, & Sadeghi, H. (2017). Designing smart model in volleyball talent identification via fuzzy logic based on main and weighted criteria resulted from the analytic hierarchy process. Journal of Advanced Sport Technology, 1(2), 16–24. Search in Google Scholar

Novatchkov, H., & Baca, A. (2013). Fuzzy logic in sports: A review and illustrative case study in the field of strength training. International Journal of Computer Applications. 71(6), 8–14.10.5120/12360-8675 Search in Google Scholar

Ozceylan, E. (2016). A mathematical model using AHP priorities for soccer player selection: A case study. South African journal of industrial engineering. 27(2), 190–205.10.7166/27-2-1265 Search in Google Scholar

Papahristodoulou, Ch. (2012). Optimal Football Strategies: AC Milan versus FC Barcelona. Business Performance Measurement and Management. Cambridge Scholars, 371–393. Search in Google Scholar

Papić, V., Rogulj, N., & Pleština, V. (2009). Identification of sport talents using a web-oriented expert system with a fuzzy module. Expert Systems with Applications, 36(5), 8830–8838.10.1016/j.eswa.2008.11.031 Search in Google Scholar

Papić, V., Rogulj, N., & Pleština V. (2011). Expert system for identification of sport talents: Idea, implementation and results. In P. Vizureanu (Ed.), Expert systems for human, materials and automation, 3–16. Rijeka: InTech. Search in Google Scholar

Pudaruth, S., Seesaha, R., & Rambacussing, L. (2013). Generating Horse Racing Tips at the Champs De March Using Fuzzy Logic. International Journal of Computer Science and Technology, 4, 7–11. Search in Google Scholar

Roberts-Thomson, C., L., Lokshin, A., M., & Kuzkin, V. A. (2014). Jump detection using fuzzy logic. In IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), 125–131. DOI: 10.1109/CIES.2014.701184110.1109/CIES.2014.7011841 Search in Google Scholar

Saaty, T.L. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York. Search in Google Scholar

Saaty, T.L. (1990). How to make a decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48, 9–26.10.1016/0377-2217(90)90057-I Search in Google Scholar

Sagar, S., & Babu, K. A. (2012). Removing impulse random noise from color video using fuzzy filter. International journal of engineering research and development, 3(3), 7–10. Search in Google Scholar

Shin, C., Y., & Wang, P., P. (2010). Economic applications of fuzzy subset theory and fuzzy logic: A brief survey. New Mathematics and Natural Computation, 6(3), 301–320.10.1142/S1793005710001773 Search in Google Scholar

Schönborn, R. (2010). Optimales Tennistraining: der Weg zum erfolgreichen Tennis vom Anfänger bis zur Weltspitze. Balingen: Spitta Verlag. Search in Google Scholar

Singh, G., Bhatia, N., & Singh, S. (2011). Fuzzy cognitive maps based cricket player performance evaluator. International Journal of Enterprise Computing and Business Systems. 1(2), 1–15. Search in Google Scholar

Stoklasa, J., Jandová, V., & Talašová, J. (2013). Weak consistency in Saaty´s AHP – evaluating creative work outcomes of Czech art colleges. Neural network world, 1(13), 61–77.10.14311/NNW.2013.23.005 Search in Google Scholar

Trawinski, K. (2010). A fuzzy classification system for prediction of the results of the basketball games. In International Conference on Fuzzy Systems, 1–7. DOI: 10.1109/FUZZY.2010.558439 Search in Google Scholar

Ulbricht, A., Fernandez-Fernandez, J., Mendez-Villanueva, A., & Ferrauti, A. (2016). Impact of Fitness Characteristics on Tennis Performance in Elite Junior Tennis Players. Journal of Strength & Conditioning Research, 30(4), 989–998.10.1519/JSC.0000000000001267 Search in Google Scholar

Zadeh, L. A. (1965). Fuzzy-Sets. Inform and Control, 8, 338–353.10.1016/S0019-9958(65)90241-X Search in Google Scholar

Zderčík, A., Nykodým, J., Talašová, J., Holeček, P., & Bozděch, M. (2020). The application of fuzzy logic in the diagnostics of performance preconditions in tennis. In J. Cacek, Z. Sajdlová & K. Šimková (Eds.), Proceedings of the 12th International Conference on Kinanthropology „Sport and Quality of Life“, Brno, Czech Republic, November 7–9, 2019 (pp. 42–49). Brno: Masaryk University. Search in Google Scholar

Zeng, W., & Li, J. (2014). Fuzzy Logic and Its Application in Football Team Ranking. The Scientific World Journal. http://dx.doi.org/10.1155/2014/29165010.1155/2014/291650408329025032227 Search in Google Scholar

Zháněl, J., Leist, K.-H., Kadlčíková, K., & Talašová, J. (1999). Possibilities of application of fuzzy sets in evaluation of motor performance. In V. Strojnik, & A. Ušaj (Eds.), Proceedings of the 6th Scientific ConferenceTheories of Human Motor Performance and their Reflections in Practice“, Ljubljana, Slovenia, September 1–4, 1999 (pp. 421–424. Ljubljana: University of Ljubljana. Search in Google Scholar

Zháněl, J., Černošek, M., Zvonař, M., Nykodým, J., Vespalec, T. & López Sánchez, G. F. (2015). Comparison of the level of top tennis players’ performance preconditions (case study). Comparación del nivel de condiciones previas de rendimiento de tenistas de élite (estudio de caso). APUNTS – Educació física i esports, 122(4), 52–60. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo