This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Soomro K, Zamir A R, Shah M. UCF101: A Datasets of 101 Human Actions Classes from Videos in The Wild [J]. Computer Science, 2012.DOI: 10.48550/arXiv.1212.0402.SoomroKZamirA RShahM.UCF101: A Datasets of 101 Human Actions Classes from Videos in The Wild [J]. Computer Science, 2012.DOI: 10.48550/arXiv.1212.0402.Open DOISearch in Google Scholar
Jhuang H, Gall J, Zuffi S, et al. Towards understanding action recognition [C] //IEEE International Conference on Computer Vision. IEEE, 2014. DOI: 10.1109/ICCV.2013.396.JhuangHGallJZuffiSTowards understanding action recognition [C] //IEEE International Conference on Computer Vision. IEEE, 2014. DOI: 10.1109/ICCV.2013.396.Open DOISearch in Google Scholar
Wishart D S, Djoumbou F Y, Ana M, et al. HMDB 4.0: the human metabolome database for 2018 [J]. Nucleic Acids Research, 2017(D1): D1.DOI: 10.1093/nar/gkx1089.WishartD SDjoumbouF YAnaMHMDB 4.0: the human metabolome database for 2018 [J]. Nucleic Acids Research, 2017(D1): D1.DOI: 10.1093/nar/gkx1089.Open DOISearch in Google Scholar
Kay W, Carreira J, Simonyan K, et al. The Kinetics Human Action Video datasets [J]. 2017.DOI: 10.48550/arXiv.1705.06950.KayWCarreiraJSimonyanKThe Kinetics Human Action Video datasets [J]. 2017.DOI: 10.48550/arXiv.1705.06950.Open DOISearch in Google Scholar
Xu Long, Gong Chen, Yang Jie, et al. Violent video detection based on mosift feature and sparse coding [C] //2014 IEEE International Conference on Acoustics, Speech and Signal Processing, 2014:3538-3542.LongXuChenGongJieYangViolent video detection based on mosift feature and sparse coding [C] //2014 IEEE International Conference on Acoustics, Speech and Signal Processing, 2014:3538-3542.Search in Google Scholar
Febin I P, Jayasree K, Joy P T. Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm [J]. Pattern Analysis and Applications, 2020, 23(2):611-623.FebinI PJayasreeKJoyP T.Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm [J]. Pattern Analysis and Applications, 2020, 23(2):611-623.Search in Google Scholar
Sudhakaran S, Lanz O. Learning to Detect Violent Videos using Convolutional Long Short-Term Memory[C]. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2017:33–34.SudhakaranSLanzO.Learning to Detect Violent Videos using Convolutional Long Short-Term Memory[C]. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2017:33–34.Search in Google Scholar
Liang Qicheng, Li Yong, Yang Kaikai, et al. Long-term recurrent convolutional network violent Behaviour recognition with attention mechanism [J]. MATEC Web of Conferences, 2021, 336 (1): 5013.QichengLiangYongLiKaikaiYangLong-term recurrent convolutional network violent Behaviour recognition with attention mechanism [J]. MATEC Web of Conferences, 2021, 336 (1): 5013.Search in Google Scholar
Feichtenhofer C, Fan Haoqi, Malik J, et al. SlowFast Networks for Video Recognition [C] //Proceedings of the IEEE/CVF international conference on computer vision. 2019: 6202-6211.FeichtenhoferCHaoqiFanMalikJSlowFast Networks for Video Recognition[C] //Proceedings of the IEEE/CVF international conference on computer vision. 2019: 6202-6211.Search in Google Scholar
Okan Köpüklü, Wei Xiangyu, Rigoll G. You Only Watch Once: A Unified CNN Architecture for RealTime Spatiotemporal Action Localization [J]. arXiv preprint arXiv:1911. 06644, 2019.KöpüklüOkanXiangyuWeiRigollG.You Only Watch Once: A Unified CNN Architecture for RealTime Spatiotemporal Action Localization [J]. arXiv preprint arXiv:1911.06644, 2019.Search in Google Scholar
Li Hongchang, Wang Jing, Han Jianjun, et al. A novel multi-stream method for violent interaction detection using deep learning [J]. Measurement and Control, 2020, 53(5):796-806.HongchangLiJingWangJianjunHanA novel multi-stream method for violent interaction detection using deep learning [J]. Measurement and Control, 2020, 53(5):796-806.Search in Google Scholar
Islam Z, Rukonuzzaman M, Ahmed R, et al. Efficient Two-Stream Network for Violence Detection Using Separable Convolutional LSTM [C] //2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021: 1-8.IslamZRukonuzzamanMAhmedREfficient Two-Stream Network for Violence Detection Using Separable Convolutional LSTM [C] //2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021: 1-8.Search in Google Scholar
Carreira J, Zisserman A Quo Vadis, Action Recognition? A New Model and the Kinetics datasets [J]. IEEE, 2017. DOI: 10.1109/CVPR.2017.502.CarreiraJQuoZisserman AVadis, Action Recognition? A New Model and the Kinetics datasets [J]. IEEE, 2017. DOI: 10.1109/CVPR.2017.502.Open DOISearch in Google Scholar
Direkoglu C. Abnormal Crowd Behavior Detection Using Motion Information Images and Convolutional Neural Networks [J]. IEEE Access, 2020, PP (99): 1-1. DOI: 10.1109/ACCESS.2020.2990355.DirekogluC.Abnormal Crowd Behavior Detection Using Motion Information Images and Convolutional Neural Networks [J]. IEEE Access, 2020, PP (99): 1-1. DOI: 10.1109/ACCESS.2020.2990355.Open DOISearch in Google Scholar
Dong Min, Fang Zhenglin, Li Yongfa, et al. AR3D: Attention Residual 3D Network for Human Action Recognition [J]. Sensors, 2021, 21(5):1656-1669.MinDongZhenglinFangYongfaLiAR3D: Attention Residual 3D Network for Human Action Recognition [J]. Sensors, 2021, 21(5):1656-1669.Search in Google Scholar
Li Zhan. Research on Video Violence Detection Algorithm Based on 3D Convolutional Neural Network [D]. Anhui University of Architecture, 2022. DOI: 10.27784/d.cnki.gahjz.2022.000160.ZhanLi. Research on Video Violence Detection Algorithm Based on 3D Convolutional Neural Network [D]. Anhui University of Architecture, 2022. DOI: 10.27784/d.cnki.gahjz.2022.000160.Open DOISearch in Google Scholar
XU Pengfei, ZHANG Pengchao, LIU Yaheng, et al. A human behavior detection algorithm based on SR3D network [J]. Computer Knowledge and Technology, 2022, 18(01):10-11. DOI: 10.14004/j.cnki.ckt.2022.0068.PengfeiXUPengchaoZHANGYahengLIUA human behavior detection algorithm based on SR3D network [J]. Computer Knowledge and Technology, 2022, 18(01):10-11. DOI: 10.14004/j.cnki.ckt.2022.0068.Open DOISearch in Google Scholar
Sanghyun Woo, Jongchan Park, Joon-Young Lee,In SoKweon. CBAM: Convolutional Block Attention Module. 2018.WooSanghyunParkJongchanLeeJoon-Young,In SoKweon. CBAM: Convolutional Block Attention Module. 2018.Search in Google Scholar
Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A New Backbone that can Enhance Learning Capability of CNN [C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. DOI: 10.1109/CVPRW50498.2020.00203.WangC YLiaoH Y MWuY HCSPNet: A New Backbone that can Enhance Learning Capability of CNN [C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. DOI: 10.1109/CVPRW50498.2020.00203.Open DOISearch in Google Scholar
Lim B, Ark S, Loeff N, et al. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting [J]. International Journal of Forecasting, 2021(1). DOI: 10.1016/j.ijforecast.2021.03.012.LimBArkSLoeffNTemporal Fusion Transformers for interpretable multi-horizon time series forecasting [J]. International Journal of Forecasting, 2021(1). DOI: 10.1016/j.ijforecast.2021.03.012.Open DOISearch in Google Scholar
Alwando E, Yie-Tarng Chen, Wen-Hsien. CNN-Based Multiple Path Searchfor Action Tube Detection in Videos [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 30 (1): 104-116.AlwandoEChenYie-TarngWen-Hsien. CNN-Based Multiple Path Searchfor Action Tube Detection in Videos [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 30 (1): 104-116.Search in Google Scholar
Wei Jiangchuan, Wang Hanli, Yi Yun, et al. P3D-CTN: Pseudo-3D Convolutional Tube Network for SpatioTemporal Action Detection in Videos [C] //2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019: 300-304.JiangchuanWeiHanliWangYunYiP3D-CTN: Pseudo-3D Convolutional Tube Network for SpatioTemporal Action Detection in Videos [C] //2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019: 300-304.Search in Google Scholar
Yang Xitong, Yang Xiaodong, Liu Mingyu, et al. STEP: Spatio-Temporal Progressive Learning for Video Action Detection [C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 264-272.XitongYangXiaodongYangMingyuLiuSTEP: Spatio-Temporal Progressive Learning for Video Action Detection [C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 264-272.Search in Google Scholar