Open Access

Long-term Target Tracking Based on Template Updating and Redetection

 and   
Dec 31, 2024

Cite
Download Cover

S. M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, and S. Kasaei, “Deep Learning for Visual Tracking: A Comprehensive Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 5, pp. 3943–3968, 2022, doi: 10.1109/TITS.2020.3046478. Marvasti-Zadeh S. M. Cheng L. Ghanei-Yakhdan H. Kasaei S. Deep Learning for Visual Tracking: A Comprehensive Survey ,” IEEE Transactions on Intelligent Transportation Systems , vol. 23 , no. 5 , pp. 3943 3968 , 2022 , doi: 10.1109/TITS.2020.3046478 . Open DOISearch in Google Scholar

Y. Zhang, T. Wang, K. Liu, B. Zhang, and L. Chen, “Recent advances of single-object tracking methods: Abrief survey,” Neurocomputing, vol. 455, pp. 1–11, 2021, doi:https://doi.org/10.1016/j.neucom.2021.05.011. Zhang Y. Wang T. Liu K. Zhang B. Chen L. Recent advances of single-object tracking methods: Abrief survey ,” Neurocomputing , vol. 455 , pp. 1 11 , 2021 , doi: https://doi.org/10.1016/j.neucom.2021.05.011 . Search in Google Scholar

J. Zhang, J. Sun, J. Wang, and X.-G. Yue, “Visual object tracking based on residual network and cascaded correlation filters,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 8, pp. 8427–8440, Aug. 2021, doi: 10.1007/s12652-020-02572-0. Zhang J. Sun J. Wang J. Yue X.-G. Visual object tracking based on residual network and cascaded correlation filters ,” Journal of Ambient Intelligence and Humanized Computing , vol. 12 , no. 8 , pp. 8427 8440 , Aug . 2021 , doi: 10.1007/s12652-020-02572-0 . Open DOISearch in Google Scholar

F. Chen, X. Wang, Y. Zhao, S. Lv, and X. Niu, “Visual object tracking: A survey,” Computer Vision and Image Understanding, vol. 222, p. 103508, 2022, doi: https://doi.org/10.1016/j.cviu.2022.103508. Chen F. Wang X. Zhao Y. Lv S. Niu X. Visual object tracking: A survey ,” Computer Vision and Image Understanding , vol. 222 , p. 103508 , 2022 , doi: https://doi.org/10.1016/j.cviu.2022.103508 . Search in Google Scholar

J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134, 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100134. Chai J. Zeng H. Li A. Ngai E. W. T. Deep learning in computer vision: A critical review of emerging techniques and application scenarios ,” Machine Learning with Applications , vol. 6 , p. 100134 , 2021 , doi: https://doi.org/10.1016/j.mlwa.2021.100134 . Search in Google Scholar

K. Tong and Y. Wu, “Deep learning-based detection from the perspective of small or tiny objects: A survey,” Image and Vision Computing, vol. 123, p. 104471, 2022, doi: https://doi.org/10.1016/j.imavis.2022.104471. Tong K. Wu Y. Deep learning-based detection from the perspective of small or tiny objects: A survey ,” Image and Vision Computing , vol. 123 , p. 104471 , 2022 , doi: https://doi.org/10.1016/j.imavis.2022.104471 . Search in Google Scholar

Y. Zhang, L. Wang, D. Wang, J. Qi, and H. Lu, “Learning Regression and Verification Networks for Robust Long-term Tracking,” International Journal of Computer Vision, vol. 129, no. 9, pp. 2536–2547, Sep. 2021, doi: 10.1007/s11263-021-01487-3. Zhang Y. Wang L. Wang D. Qi J. Lu H. Learning Regression and Verification Networks for Robust Long-term Tracking ,” International Journal of Computer Vision , vol. 129 , no. 9 , pp. 2536 2547 , Sep . 2021 , doi: 10.1007/s11263-021-01487-3 . Open DOISearch in Google Scholar

E. Tian, Y. Lei, J. Sun, K. Zhou, B. Zhou, and H. Li, “The Segmentation Tracker With Mask-Guided Background Suppression Strategy,” IEEE Access, vol. 12, pp. 124032–124044, 2024, doi: 10.1109/ACCESS.2024.3451229. Tian E. Lei Y. Sun J. Zhou K. Zhou B. Li H. The Segmentation Tracker With Mask-Guided Background Suppression Strategy ,” IEEE Access , vol. 12 , pp. 124032 124044 , 2024 , doi: 10.1109/ACCESS.2024.3451229 . Open DOISearch in Google Scholar

K. Dai, Y. Zhang, D. Wang, J. Li, H. Lu, and X. Yang, “High-Performance Long-Term Tracking With MetaUpdater,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020. Dai K. Zhang Y. Wang D. Li J. Lu H. Yang X. High-Performance Long-Term Tracking With MetaUpdater ,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , Jun . 2020 . Search in Google Scholar

L. Huang, X. Zhao, and K. Huang, “GlobalTrack: A Simple and Strong Baseline for Long-Term Tracking,” AAAI, vol. 34, no. 07, pp. 11037–11044, Apr. 2020, doi: 10.1609/aaai.v34i07.6758. Huang L. Zhao X. Huang K. GlobalTrack: A Simple and Strong Baseline for Long-Term Tracking ,” AAAI , vol. 34 , no. 07 , pp. 11037 11044 , Apr . 2020 , doi: 10.1609/aaai.v34i07.6758 . Open DOISearch in Google Scholar

H. Fan et al., “LaSOT: A High-quality Large-scale Single Object Tracking Benchmark,” International Journal of Computer Vision, vol. 129, no. 2, pp. 439–461, Feb. 2021, doi: 10.1007/s11263-020-01387-y. Fan H. “LaSOT: A High-quality Large-scale Single Object Tracking Benchmark” International Journal of Computer Vision , vol. 129 , no. 2 , pp. 439 461 , Feb . 2021 , doi: 10.1007/s11263-020-01387-y . Open DOISearch in Google Scholar

R. Faster, “Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 9199, no. 10.5555, pp. 2969239–2969250, 2015. Faster R. Towards real-time object detection with region proposal networks ,” Advances in neural information processing systems , vol. 9199 , no. 10.5555 , pp. 2969239 2969250 , 2015 . Search in Google Scholar

L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-Convolutional Siamese Networks for Object Tracking,” in Computer Vision - ECCV 2016 Workshops, G. Hua and H. Jégou, Eds., Cham: Springer International Publishing, 2016, pp. 850–865. Bertinetto L. Valmadre J. Henriques J. F. Vedaldi A. Torr P. H. S. Fully-Convolutional Siamese Networks for Object Tracking ,” in Computer Vision - ECCV 2016 Workshops , Hua G. Jégou H. , Eds., Cham : Springer International Publishing , 2016 , pp. 850 865 . Search in Google Scholar

B. Li et al., “Evolution of siamese visual tracking with very deep networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 15–20. Li B. “Evolution of siamese visual tracking with very deep networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , Long Beach, CA, USA , 2019 , pp. 15 20 . Search in Google Scholar

M. Zolfaghari, K. Singh, and T. Brox, “Eco: Efficient convolutional network for online video understanding,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 695–712. Zolfaghari M. Singh K. Brox T. Eco: Efficient convolutional network for online video understanding ,” in Proceedings of the European conference on computer vision (ECCV) , 2018 , pp. 695 712 . Search in Google Scholar

A. Lukežič, L. Č. Zajc, T. Vojíř, J. Matas, and M. Kristan, “Now you see me: evaluating performance in long-term visual tracking,” arXiv preprint arXiv:1804.07056, 2018. Lukežič A. Zajc L. Č. Vojíř T. Matas J. Kristan M. Now you see me: evaluating performance in long-term visual tracking ,” arXiv preprint arXiv:1804.07056 , 2018 . Search in Google Scholar

L. Leal-Taixé, A. Milan, I. Reid, S. Roth, K. M. Schindler, and M. Challenge, “Towards a benchmark for multi-target tracking,” arXiv preprint arXiv:1504.01942, vol. 34, 2015. Leal-Taixé L. Milan A. Reid I. Roth S. Schindler K. M. Challenge M. Towards a benchmark for multi-target tracking ,” arXiv preprint arXiv:1504.01942 , vol. 34 , 2015 . Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Computer Sciences, other