Open Access

Infrared Weak and Small Target Detection Algorithm Based on Deep Learning

 and   
Sep 30, 2024

Cite
Download Cover

Figure 1.

RT-DETR network structure
RT-DETR network structure

Figure 2

EMA module
EMA module

Figure 3.

CAMixing module
CAMixing module

Figure 4.

Image enhancement effect
Image enhancement effect

Figure 5.

AP change curve
AP change curve

Figure 6.

Improved detection results
Improved detection results

experimental environment

Experimental environment Version
CPU IntelCorei7-11800H
GPU NVIDIA GeForce RTX2080 Ti
Language Python3.8
Deep Learning Framework Pytorch1.14.0
CUDA 11.8.0

Ccomparison of algorithm enhancements

index algorithm PSNR SSIM Entropy AG EME
Original image 6.2850 41.9135 2.6388
SSR 28.2970 0.85522 5.7150 44.2675 2.8967
MSR 28.7772 0.8676 6.2176 44.9135 2.8932
DDE 36.0989 0.9679 6.4594 44.2206 2.6857
Bilateral filtering 34.6621 0.8395 6.3155 21.7407 1.4891
DDE+MSR 28.7581 0.8436 6.2793 46.8969 2.8882

Comparative experiments of different parameters of shape-iou

s 0.1 0.2 0.3 0.4 0.5 0.6 1.0
mAP(%) 83.5 83.4 84.9 85.3 84.8 83.5 83.4

Compares the experimental results

EMA CMAixing Shape-IoU ATFL P/% R/% AP/% Param/106
73.2 75.2 84.6 32.81
72.2 76.3 85.5 33.40
74.8 75.2 85.6 34.97
74.1 75.0 86.2 35.23
75.5 76.2 85.9 32.81
75.4 77.1 87.8 35.23
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Computer Sciences, other