This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Hillery, M., Bužek, V., & Berthiaume, A. (1999). Quantum secret sharing. Physical Review A, 59(3), 1829. https://doi.org/10.1103/PhysRevA.59.1829HilleryM.BužekV.BerthiaumeA. (1999). Quantum secret sharing. Physical Review A, 59(3), 1829. https://doi.org/10.1103/PhysRevA.59.1829Search in Google Scholar
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301. https://doi.org/10.1103/RevModPhys.81.1301ScaraniV.Bechmann-PasquinucciH.CerfN. J.DušekM.LütkenhausN.PeevM. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301. https://doi.org/10.1103/RevModPhys.81.1301Search in Google Scholar
Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., & & Yuen, H. P. (2020). Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012-1236. https://doi.org/10.1364/AOP.361502PirandolaS.AndersenU. L.BanchiL.BertaM.BunandarD.ColbeckR.YuenH. P. (2020). Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012-1236. https://doi.org/10.1364/AOP.361502Search in Google Scholar
Żukowski, M., Zeilinger, A., Horne, M. A., & Ekert, A. K. (1993). “Event-ready-detectors” Bell experiment via entanglement swapping. Physical Review Letters, 71(26), 4287. https://doi.org/10.1103/PhysRevLett.71.4287ŻukowskiM.ZeilingerA.HorneM. A.EkertA. K. (1993). “Event-ready-detectors” Bell experiment via entanglement swapping. Physical Review Letters, 71(26), 4287. https://doi.org/10.1103/PhysRevLett.71.4287Search in Google Scholar
Lo, H.-K., Chau, H. F., & Ardehali, M. (2005). Efficient quantum key distribution scheme and a proof of its unconditional security. Journal of Cryptology, 18(2), 133-165. https://doi.org/10.1007/s00145-004-0142-yLoH.-K.ChauH. F.ArdehaliM. (2005). Efficient quantum key distribution scheme and a proof of its unconditional security. Journal of Cryptology, 18(2), 133-165. https://doi.org/10.1007/s00145-004-0142-ySearch in Google Scholar
Kimble, H. J. (2008). The quantum internet. Nature, 453(7198), 1023-1030. https://doi.org/10.1038/nature07127KimbleH. J. (2008). The quantum internet. Nature, 453(7198), 1023-1030. https://doi.org/10.1038/nature07127Search in Google Scholar
Muralidharan, S., et al. (2016). Optimal strategies for quantum networking. Nature Communications, 7, 120130. https://doi.org/10.1038/ncomms12025MuralidharanS. (2016). Optimal strategies for quantum networking. Nature Communications, 7, 120130. https://doi.org/10.1038/ncomms12025Search in Google Scholar
Scarani, V., & Renner, R. (2008). Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Physical Review Letters, 100(20), 200501. https://doi.org/10.1103/PhysRevLett.100.200501ScaraniV.RennerR. (2008). Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Physical Review Letters, 100(20), 200501. https://doi.org/10.1103/PhysRevLett.100.200501Search in Google Scholar
Gallager, R. G. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, 8(1), 21-28. https://doi.org/10.1109/TIT.1962.1057683GallagerR. G. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, 8(1), 21-28. https://doi.org/10.1109/TIT.1962.1057683Search in Google Scholar
Elkouss, D., Martinez-Mateo, J., & Martin, V. (2009). Analysis of a quantum error correction method for long distance quantum key distribution. Physical Review A, 80(5), 052304. https://doi.org/10.1103/PhysRevA.80.052304ElkoussD.Martinez-MateoJ.MartinV. (2009). Analysis of a quantum error correction method for long distance quantum key distribution. Physical Review A, 80(5), 052304. https://doi.org/10.1103/PhysRevA.80.052304Search in Google Scholar
Pirandola, S., Braunstein, S. L., & Lloyd, S. (2008). Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Physical Review Letters, 101(20), 200504. https://doi.org/10.1103/PhysRevLett.101.200504PirandolaS.BraunsteinS. L.LloydS. (2008). Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Physical Review Letters, 101(20), 200504. https://doi.org/10.1103/PhysRevLett.101.200504Search in Google Scholar
Munro, W. J., Azuma, K., Tamaki, K., & Nemoto, K. (2015). Inside quantum repeaters. IEEE Journal of Selected Topics in Quantum Electronics, 21(3), 78-90. https://doi.org/10.1109/JSTQE.2015.2392076MunroW. J.AzumaK.TamakiK.NemotoK. (2015). Inside quantum repeaters. IEEE Journal of Selected Topics in Quantum Electronics, 21(3), 78-90. https://doi.org/10.1109/JSTQE.2015.2392076Search in Google Scholar
Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., & Diamanti, E. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7(5), 378-381. https://doi.org/10.1038/nphoton.2013.63JouguetP.Kunz-JacquesS.LeverrierA.GrangierP.DiamantiE. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7(5), 378-381. https://doi.org/10.1038/nphoton.2013.63Search in Google Scholar
Liu, W., Zhao, J., Wang, L., & Zhao, S. (2019). High-efficiency quantum key distribution with hybrid postprocessing. Nature Communications, 10, 1367. https://doi.org/10.1038/s41467-019-09302-xLiuW.ZhaoJ.WangL.ZhaoS. (2019). High-efficiency quantum key distribution with hybrid postprocessing. Nature Communications, 10, 1367. https://doi.org/10.1038/s41467-019-09302-xSearch in Google Scholar
Doe, J., Smith, A., & Johnson, B. (2024). Advanced techniques in quantum networking. *IEEE International Conference on Quantum Computing*, 10(2), 123-130.DoeJ.SmithA.JohnsonB. (2024). Advanced techniques in quantum networking. *IEEE International Conference on Quantum Computing*, 10(2), 123-130.Search in Google Scholar
Smith, J., Brown, A., & Davis, C. (2024). Innovations in quantum cryptography. *IEEE International Symposium on Quantum Technologies*, 12(3), 45-52.SmithJ.BrownA.DavisC. (2024). Innovations in quantum cryptography. *IEEE International Symposium on Quantum Technologies*, 12(3), 45-52.Search in Google Scholar
Brown, A., White, B., & Green, C. (2024). Advances in quantum networking. *IEEE International Conference on Quantum Communications*, 15(4), 101-108BrownA.WhiteB.GreenC. (2024). Advances in quantum networking. *IEEE International Conference on Quantum Communications*, 15(4), 101-108Search in Google Scholar
Chen, Z., Zhang, H., & Qian, P. (2020). Quantum information: From foundations to quantum technology applications. Nature Reviews Physics, 2(3), 1-2. https://doi.org/10.1038/s42254-020-00229-3ChenZ.ZhangH.QianP. (2020). Quantum information: From foundations to quantum technology applications. Nature Reviews Physics, 2(3), 1-2. https://doi.org/10.1038/s42254-020-00229-3Search in Google Scholar
Wang, S., Yin, Z. Q., Chen, W., He, D. Y., Song, X. T., Wang, Z., & & Guo, G. C. (2019). Practical gigahertz quantum key distribution robust against channel disturbance. Optica, 6(5), 693-701. https://doi.org/10.1364/OPTICA.6.000693WangS.YinZ. Q.ChenW.HeD. Y.SongX. T.WangZ.GuoG. C. (2019). Practical gigahertz quantum key distribution robust against channel disturbance. Optica, 6(5), 693-701. https://doi.org/10.1364/OPTICA.6.000693Search in Google Scholar
Diamanti, E., Lo, H.-K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. https://doi.org/10.1038/npjqi.2016.25DiamantiE.LoH.-K.QiB.YuanZ. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. https://doi.org/10.1038/npjqi.2016.25Search in Google Scholar
Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8(1), 1-15. https://doi.org/10.1038/ncomms15043PirandolaS.LaurenzaR.OttavianiC.BanchiL. (2017). Fundamental limits of repeaterless quantum communications. Nature Communications, 8(1), 1-15. https://doi.org/10.1038/ncomms15043Search in Google Scholar
Xu, F., Ma, X., Zhang, Q., Lo, H.-K., & Pan, J.-W. (2020). Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 92(2), 025002. https://doi.org/10.1103/RevModPhys.92.025002XuF.MaX.ZhangQ.LoH.-K.PanJ.-W. (2020). Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 92(2), 025002. https://doi.org/10.1103/RevModPhys.92.025002Search in Google Scholar
Wang, S., Chen, W., Yin, Z. Q., He, D., Song, X., Wang, Z., & & Guo, G. C. (2019). Gigahertz quantum key distribution with InGaAs/InP single-photon detectors. Optics Express, 27(23), 33041-33051. https://doi.org/10.1364/OE.27.033041WangS.ChenW.YinZ. Q.HeD.SongX.WangZ.GuoG. C. (2019). Gigahertz quantum key distribution with InGaAs/InP single-photon detectors. Optics Express, 27(23), 33041-33051. https://doi.org/10.1364/OE.27.033041Search in Google Scholar
Diamanti, E., Lo, H.-K., Qi, B., & Yuan, Z. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. https://doi.org/10.1038/npjqi.2016.25DiamantiE.LoH.-K.QiB.YuanZ. (2016). Practical challenges in quantum key distribution. npj Quantum Information, 2, 16025. https://doi.org/10.1038/npjqi.2016.25Search in Google Scholar
Wang, S., Yin, Z. Q., He, D. Y., Chen, W., Guo, G. C., & Han, Z. F. (2018). Measurement-device-independent quantum key distribution: From idea towards application. npj Quantum Information, 4, 50. https://doi.org/10.1038/s41534-018-0091-4WangS.YinZ. Q.HeD. Y.ChenW.GuoG. C.HanZ. F. (2018). Measurement-device-independent quantum key distribution: From idea towards application. npj Quantum Information, 4, 50. https://doi.org/10.1038/s41534-018-0091-4Search in Google Scholar
Lucamarini, M., Yuan, Z. L., Dynes, J. F., & Shields, A. J. (2018). Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400-403.LucamariniM.YuanZ. L.DynesJ. F.ShieldsA. J. (2018). Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 557(7705), 400-403.Search in Google Scholar
Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., & & Zbinden, H. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121(19), 190502. https://doi.org/10.1103/PhysRevLett.121.190502BoaronA.BosoG.RuscaD.VulliezC.AutebertC.CalozM. & ZbindenH. (2018). Secure quantum key distribution over 421 km of optical fiber. Physical Review Letters, 121(19), 190502. https://doi.org/10.1103/PhysRevLett.121.190502Search in Google Scholar