Open Access

Effect of the endophytic plant growth promoting Enterobacter ludwigii EB4B on tomato growth


Cite

Adesemoye, A.O., Torbert, H.A. and Kloepper, J.W. 2009. Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58: 921–929.10.1007/s00248-009-9531-ySearch in Google Scholar

Ahemad, F., Ahmad, I. and Khan, M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163: 173–181.10.1016/j.micres.2006.04.001Search in Google Scholar

Bashan, Y., Holguin, G. and Lifshitz, R. 1993. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick B.R. and Thompson, J.E. (eds). Methods in plant molecular biology and biotechnology. Boca Raton: CRC, p. 331–345.Search in Google Scholar

Bloemberg, G.V. and Lugtenberg, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4: 343-350.10.1016/S1369-5266(00)00183-7Search in Google Scholar

Bric, J.M., Bosrock, R.M. and Silversone, S.E. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellu-lose membrane. Applied and Enviromental Microbiology, 57: 535–538.10.1128/aem.57.2.535-538.1991Search in Google Scholar

Chauhan, H., Bagyaraj, D.J., Selvakumar, G. and Sundaram, S.P. 2015. Novel plant growth promoting rhizobacteria - Prospects and potential. Applied Soil Ecology, 95: 38–53.10.1016/j.apsoil.2015.05.011Search in Google Scholar

Dekkers, L.C., Phoelich, C.C., Fits, L.V. and Lugtenberg, B.J. 1997. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Microbiology, 7051–7056.10.1073/pnas.95.12.7051Search in Google Scholar

Dey, R., Pal, K.K., Bhatt, D.M. and Chauhan, S.M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159: 371–394.10.1016/j.micres.2004.08.004Search in Google Scholar

Dias, M.P., Bastos, M.S., Xavier, V.B., Cassel, E., Astarita, L.V. and Santarém, E.R. 2017. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiology and Biochemistry, 118: 479–493.10.1016/j.plaphy.2017.07.017Search in Google Scholar

Dutta, J. and Thakur, D. 2017. Evaluation of multi-farious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLOS ONE, 12(8): e0182302.10.1371/journal.pone.0182302Search in Google Scholar

Costacurta, A., Mazzafera, P. and Rosato, Y.B. 2006. Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. Microbiology Letters, 159: 215–220.10.1111/j.1574-6968.1998.tb12863.xSearch in Google Scholar

El Aoufir, A. 2001. Étude du Flétrissement Vasculaire du Pois Chiche (Cicer arietinum) Causé par le Fusarium oxysporum f. sp. ciceri. Evaluation de la Fiabilité de L’analyse Isoenzymatique et de la Compatibilité Végétative pour la Caractérisation des Races Physiologiques, Canada: University of Laval, PhD Theses.Search in Google Scholar

Evans, H. C., Holmes, K. A. and Thomas, S.E. 2003. Endophytes and mycoparasites associated with an indigenous forest tree, the obromagileri, in Ecuador and preliminary assessment of their potentiel as biocontrol agents of cocoa diseases. Mycological Progress, 2: 149–160.10.1007/s11557-006-0053-4Search in Google Scholar

Fallahzadeh-Mamaghani, V., Ahmadzadeh, M. and Sharifi, R. 2009. Screening systemic resistance inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. Journal of Plant Pathology, 663–670.Search in Google Scholar

Forchetti, G., Masciarelli, O., Izaguirre, M.J., Alemano, S., Alvarez, D. and Abdala, G. 2010. endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Current Microbiology, 61(6): 485–493.10.1007/s00284-010-9642-120383767Search in Google Scholar

Gopalakrishnan, S., Upadhyaya, H.D., Vadlamudi, S., Humayun, P., Vidya, M.S., Alekhya, G., Singh, A., Vijayabharathi, R., Bhimineni, R.K., Seema, M., Rathore, A. and Rupela, O. 2012. Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springer Plus, 1: 71.10.1186/2193-1801-1-71Search in Google Scholar

Grobelak, A., Napora, A. and Kacprzak, M. 2015. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84: 22–28.10.1016/j.ecoleng.2015.07.019Search in Google Scholar

Gupta, M., Kiran, S., Gulatic, A., Singh, B. and Tewari, R. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167: 358–363.10.1016/j.micres.2012.02.00422417676Search in Google Scholar

Haas, D. and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3: 307–319.10.1038/nrmicro1129Search in Google Scholar

Heidari, M. and Golpayegani, A. 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11: 57–61.10.1016/j.jssas.2011.09.001Search in Google Scholar

Husen, E. 2003. Screening of soil bacteria for plant growth promotion activities in vitro. Indian Journal of Agricultural Sciences, 4: 27–31.10.21082/ijas.v4n1.2003.27-31Search in Google Scholar

Ji, S.H., Gururani, M.A. and Chun, S.C. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169(1): 83–98.10.1016/j.micres.2013.06.00323871145Search in Google Scholar

Johansson, P.M., Johnsson, L. and Gerhardson B. 2003. Suppression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant Pathology, 52: 219–227.10.1046/j.1365-3059.2003.00815.xSearch in Google Scholar

Kadir, J., Rahman, M., Mahmud, T., Rahman, R.A., and Begum, M. 2008. Extraction of antifungal substances from Burkholderia cepacia with antibiotic activity against Colletotrichum gloeosporioides on papaya (Carica papaya L.). International Journal of Agriculture and Biology, 15–20.Search in Google Scholar

Kapoor, R., Gupta, M.K., Naveen, K. and Kanwar, S.S. 2017. Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere, 4: 62–69.10.1016/j.rhisph.2017.07.002Search in Google Scholar

Karlidag, H., Yildirim, E., Turan, M., Pehluvan, M. and Donmez, F. 2013. Plant growth promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa). Horticultural Science, 48(5): 563–567.10.21273/HORTSCI.48.5.563Search in Google Scholar

Khan, A.L., Waqas, M., Kang, S-M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah, I., Ali, L., Jung, H-Y. and Lee, I.J. 2014. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 52(8): 689–695.10.1007/s12275-014-4002-724994010Search in Google Scholar

Kisiel, A. and Kepczynska, E. 2016. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta, 243: 1169–1189.10.1007/s00425-016-2469-7483722426861677Search in Google Scholar

Kokalis-Burelle, N., Vavrina, C.S., Rossskopf, E.N. and Shelby, R.A. 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil, 238: 257–266.10.1023/A:1014464716261Search in Google Scholar

Landa, B., Navas-Cortés, J., Hervás, A. and Jiménez-Díaz, R. 2001. Influence of Temperature and Inoculum Density of Fusarium oxysporum f.sp. ciceris on Suppression of Fusarium Wilt of Chick-pea by Rhizosphere Bacteria. The American Phytopathological Society, 91(8): 807–16.10.1094/PHYTO.2001.91.8.80718944039Search in Google Scholar

Lemanceau, P., Expert, D., Gaymard, F., Bakker, P.A.H.M. and Briat, J.F. 2009. Role of iron in plant–microbe interactions. Advances in Botanical Research, 51: 491–549.10.1016/S0065-2296(09)51012-9Search in Google Scholar

Lemanceau, P. and Alabouvette, C. 1991. Biological control of fusarium diseases by fluorescent Pseudomonas and non pathogenic Fusarum. Crop Protection, 10: 279–286.10.1016/0261-2194(91)90006-DSearch in Google Scholar

Lee, S., Ahn, I., Sim, S., Lee, S., Seo, M. and Kim, S. 2010. Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system. European Journal of Plant Pathology, 1–11.10.1007/s10658-009-9514-3Search in Google Scholar

Liu, C., Wang, Y., Jin, Y., Pan, K., Zhou, X. and Li, N. 2017. Photoprotection regulated by phosphorus application can improve photosynthetic performance and alleviate oxidative damage in dwarf bamboo subjected to water stress. Plant Physiology and Biochemistry, 118: 88–97.10.1016/j.plaphy.2017.05.02228624684Search in Google Scholar

Loaces, I., Ferrando, L. and Scavino, A.F. 2011. Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecology, 61: 606–618.10.1007/s00248-010-9780-9Search in Google Scholar

Ma, Y., Prasad, M.N.V., Rajkumar, M. and Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 48–58.10.1016/j.biotechadv.2010.12.001Search in Google Scholar

Madhaiyan, M., Poonguzhali, S., Lee, J.S., Senthil-kumar, M., Lee, K.C. and Sundaram, S. 2010. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizo-sphere soils. International Journal of Systematic and Evolutionary Microbiology, 60: 2451–2457.10.1099/ijs.0.018713-0Search in Google Scholar

Martinez-Viveros, O., Jourquera, M.A., Crowley, D.E., Gajardo, G. and Mora, M.L. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10: 293–319.10.4067/S0718-95162010000100006Search in Google Scholar

Melo, J., Carolino, M., Carvalho, L., Correia, P., Tenreiro, R., Chaves, S., Meleiro, A I., de Souza, S B., Dias, T., Cruz, C. and Ramos, A.C. 2016. Crop management as a driving force of plant growth promoting rhizobacteria physiology. Springer Plus, 5: 1574.10.1186/s40064-016-3232-zSearch in Google Scholar

Mendes, R., Garbeva, P. and Raaijmakers, J.M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5): 634–663.10.1111/1574-6976.1202823790204Search in Google Scholar

Nadeem, S.M., Ahmad, M, Zahir, Z.A., Javaid, A. and Ashraf, M. 2013. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2): 429–48.10.1016/j.biotechadv.2013.12.00524380797Search in Google Scholar

Naveed, M., Iftikhar, A., Nauman, K. and Mumtaz, A.S. 2014. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66. Brazilian Journal of Microbiology, 45(2): 603–611.10.1590/S1517-83822014000200031Search in Google Scholar

Kloepper, J.W., Lifshitz, R. and Zablotwicz, R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends In Biotechnoly, 7: 39–43.10.1016/0167-7799(89)90057-7Search in Google Scholar

Piccoli, P. and Bottini, R. 2013. Abiotic Stress Tolerance Induced by Endophytic PGPR. In: Aroca R. (eds) Symbiotic Endop. Soil Biology, vol 37hytes. Springer, Berlin, Heidelberg.10.1007/978-3-642-39317-4_8Search in Google Scholar

Pikovskaya, R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya, 17, 362-370.Search in Google Scholar

Piromyou, P., Buranabanyat, B., Tantasawat, P., Tittabutr, P., Boonkerd, N. and Neung, T. 2011. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 47: 44–54.10.1016/j.ejsobi.2010.11.004Search in Google Scholar

Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V. and Samiyappan, R. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20: 1–11.10.1016/S0261-2194(00)00056-9Search in Google Scholar

Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J. and Dowling, D.N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 278(1): 1–9.10.1111/j.1574-6968.2007.00918.x18034833Search in Google Scholar

Reddy, P.P. 2013. Recent advances in crop protection. New Delhi: Springer, p. 131–158.10.1007/978-81-322-0723-8_10Search in Google Scholar

Rubini, M.R., Silva-Ribeiro, R.T., Pomella, A.W.V., Maki, C.S., Araujo, W.L., Santos, D.R. and Azevedo, J.L. 2005. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches broom disease. International Journal of Biological Sciences,1: 24–33.10.7150/ijbs.1.24Search in Google Scholar

Santos-Villalobos, S., Barrera-Galicia, G.C., Miranda-Salcedo, M.A. and Peña-Cabriales, J.J. 2012. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology, 28: 2615–2623.10.1007/s11274-012-1071-9Search in Google Scholar

Sasirekha, B. and Shivakumar, S. 2016. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agriculture and Natural Resources, 50(4): 250–256.10.1016/j.anres.2016.02.003Search in Google Scholar

Schmidt, C.S., Agostini, F., Leifert, C., Killham, K. and Mullins, C.E. 2004. Influence of soil tempereature and matric potential on sugar beet seed-limg colonization and suupression of Pythium damping-of by the antagonistic bacteria Pseudomonas fluorescens and Bacillius subtilis. Phytopathology, 94: 351–363.10.1094/PHYTO.2004.94.4.351Search in Google Scholar

Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160: 47–56.10.1016/0003-2697(87)90612-9Search in Google Scholar

Shoebitz, M., Ribaudo, C.M., Pardo, M.A., Cantore, M.L. and Curá, J.A. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perennerhizosphere. Soil Biology and Biochemistry, 415(9): 1768–1774.10.1016/j.soilbio.2007.12.031Search in Google Scholar

Szepesi, A., Csiszar, J., Genus, K., Horvath, E., Horvath, F., Simon, M.I. and Tari, I. 2009. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and absiscic acid accumulation and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. Journal of Plant Physiology, 166: 914–925.10.1016/j.jplph.2008.11.012Search in Google Scholar

Tyler, H.L. and Triplett, E.W. 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. The Annual Review of Phytopathology, 46: 53–73.10.1146/annurev.phyto.011708.103102Search in Google Scholar

Van Loon, L.C. 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119: 243–254.10.1007/s10658-007-9165-1Search in Google Scholar

Van Veen, J.A., Van Overbeek, L.S. and Van Elsas, J.D. 1997. Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61: 121–135.10.1128/.61.2.121-135.1997Search in Google Scholar

Venkat, K.S., Menon, S., Agarwal, H. and Gopalakrishnan, D. 2017. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technologies, 1–6.Search in Google Scholar

Vessey, K.J. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255: 571–586.10.1023/A:1026037216893Search in Google Scholar

Vos, C.M., Yang, Y., De Coninck, B. and Cammue B.P.A. 2014. Fungal (-like) biocontrol organisms in tomato disease control. Biological control, 74: 65–81.10.1016/j.biocontrol.2014.04.004Search in Google Scholar

Weller, D.M., Landa, B.B., Mavrodi, O.V., Schroeder, K.L., de la Fuente, L., Blouin-Bankhead, S.B., Allende-Molar, R., Bonsall, R.F., Mavrodi, D.V. and Thomashow, L.S. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology, 9: 4–20.10.1055/s-2006-924473Search in Google Scholar

Weller, D.M., Raaijmakers, J.M., McSpadden Gardener, B.B. and Thomashaw, L.S. 2002. Microbial populations responsible for specific soil suppressiveness plant pathogens. Annual Review of Phytopathology, 40: 309–348.10.1146/annurev.phyto.40.030402.110010Search in Google Scholar

Whipps, J.M. 2001. Microbial interactions and bio-control in the rhizosphere. Journal of Experimental Botany, 52: 487–511.10.1093/jxb/52.suppl_1.487Search in Google Scholar

eISSN:
1791-3691
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, other