Cite

Abshire CF, Prasai K, Soto I, Shi R, Concha M, Baddoo M, Flemington EK, Ennis DG, Scott RS, Harrison L (2016) Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. NPJ Microgravity 2: 16038. https://doi.org/10.1038/npjmgrav.2016.38116 AbshireCF PrasaiK SotoI ShiR ConchaM BaddooM FlemingtonEK EnnisDG ScottRS HarrisonL 2016 Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress NPJ Microgravity 2 16038 https://doi.org/10.1038/npjmgrav.2016.38116 Search in Google Scholar

Acres JM, Youngapelian MJ, Nadeau J (2021) The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. NPJ Microgravity 7: 7. https://doi.org/10.1038/s41526-021-00135-x AcresJM YoungapelianMJ NadeauJ 2021 The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis NPJ Microgravity 7 7 https://doi.org/10.1038/s41526-021-00135-x Search in Google Scholar

Apollo 16 preliminary examination team (1973) The apollo 16 lunar samples: petrographic and chemical description. Science 179: 23–24. doi: 10.1126/science.179.4068.23 Apollo 16 preliminary examination team 1973 The apollo 16 lunar samples: petrographic and chemical description Science 179 23 24 10.1126/science.179.4068.23 Open DOISearch in Google Scholar

Arena C, De Micco V, Macaeva E, Quintens R (2014) Space radiation effects on plant and mammalian cells. Acta Astronautica 104: 419. https://doi.org/10.1016/j.actaastro.2014.05.005 ArenaC De MiccoV MacaevaE QuintensR 2014 Space radiation effects on plant and mammalian cells Acta Astronautica 104 419 https://doi.org/10.1016/j.actaastro.2014.05.005 Search in Google Scholar

ARES – Astromaterials Research and Exploration Science. https://ares.jsc.nasa.gov/Visited on November 12th 2023. ARES – Astromaterials Research and Exploration Science https://ares.jsc.nasa.gov/Visited on November 12th 2023. Search in Google Scholar

Aunins TR, Erickson KE, Prasad N, Levy SE, Jones A, Shrestha S, Mastracchio R, Stodieck L, Klaus D, Zea L, Chatterjee A (2018) Spaceflight modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response. Frontiers in Microbiology 9: 310. https://doi.org/10.3389/fmicb.2018.00310 AuninsTR EricksonKE PrasadN LevySE JonesA ShresthaS MastracchioR StodieckL KlausD ZeaL ChatterjeeA 2018 Spaceflight modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response Frontiers in Microbiology 9 310 https://doi.org/10.3389/fmicb.2018.00310 Search in Google Scholar

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9: 1473. https://doi.org/10.3389/fpls.2018.01473 BackerR RokemJS IlangumaranG LamontJ PraslickovaD RicciE SubramanianS SmithDL 2018 Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture Frontiers in Plant Science 9 1473 https://doi.org/10.3389/fpls.2018.01473 Search in Google Scholar

Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461(7268): 1243–1247. https://doi.org/10.1038/nature08480 BarrickJE YuDS YoonSH JeongH OhTK SchneiderD LenskiRE KimJF 2009 Genome evolution and adaptation in a long-term experiment with Escherichia coli Nature 461 7268 1243 1247 https://doi.org/10.1038/nature08480 Search in Google Scholar

Bijlani S, Singh NK, Eedara VVR, Podile AR, Mason CE, Wang CCC, Venkateswaran K (2021) Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Frontiers in Microbiology 12: 639396. https://doi.org/10.3389/fmicb.2021.639396 BijlaniS SinghNK EedaraVVR PodileAR MasonCE WangCCC VenkateswaranK 2021 Methylobacterium ajmalii sp. nov., Isolated From the International Space Station Frontiers in Microbiology 12 639396 https://doi.org/10.3389/fmicb.2021.639396 Search in Google Scholar

Blachowicz A, Chiang AJ, Romsdahl J, Kalkum M, Wang CCC, Venkateswaran K (2019) Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station. Fungal Genetic Biology 124: 39–46. https://doi.org/10.1016/j.fgb.2019.01.001 BlachowiczA ChiangAJ RomsdahlJ KalkumM WangCCC VenkateswaranK 2019 Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station Fungal Genetic Biology 124 39 46 https://doi.org/10.1016/j.fgb.2019.01.001 Search in Google Scholar

Bryan W (2020) Technology Taxonomy. In: NASA [internet cited 3 Feb 2023]. Available: http://www.nasa.gov/offices/oct/taxonomy/index.html BryanW 2020 Technology Taxonomy In: NASA [internet cited 3 Feb 2023]. Available: http://www.nasa.gov/offices/oct/taxonomy/index.html Search in Google Scholar

Bücker H, Horneck G (1975) The biological effectiveness of HZE-particles of cosmic radiation studied in the Apollo 16 and 17 Biostack experiments. Acta Astronautica 2: 247–264. https://doi.org/10.1016/0094-5765(75)90095-8 BückerH HorneckG 1975 The biological effectiveness of HZE-particles of cosmic radiation studied in the Apollo 16 and 17 Biostack experiments Acta Astronautica 2 247 264 https://doi.org/10.1016/0094-5765(75)90095-8 Search in Google Scholar

Califar B, Tucker R, Cromie J, Sng N, Schmitz RA, Callaham JA, Barbazuk B, Paul A-L, Fer RJ (2018) Approaches for surveying cosmic radiation damage in large populations of seeds - antarctic balloons and particle beams. Gravitational and Space Research 6: 54–73. https://doi.org/doi:10.2478/gsr-2018-0010 CalifarB TuckerR CromieJ SngN SchmitzRA CallahamJA BarbazukB PaulA-L FerRJ 2018 Approaches for surveying cosmic radiation damage in large populations of seeds - antarctic balloons and particle beams Gravitational and Space Research 6 54 73 https://doi.org/doi:10.2478/gsr-2018-0010 Search in Google Scholar

Canadian Space Agency: Lunar Gateway https://www.asc-csa.gc.ca/eng/atronomy/moon-exploration/lunar-gateway.asp visited November 12th 2023. Canadian Space Agency: Lunar Gateway https://www.asc-csa.gc.ca/eng/atronomy/moon-exploration/lunar-gateway.asp visited November 12th 2023. Search in Google Scholar

Caplin N, Willey N (2018) Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Frontiers in Plant Science 9: 847. https://doi.org/10.3389/fpls.2018.00847 CaplinN WilleyN 2018 Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses Frontiers in Plant Science 9 847 https://doi.org/10.3389/fpls.2018.00847 Search in Google Scholar

Casaburi G, Goncharenko-Foster I, Duscher AA, Foster JS (2017) Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Science Reports 7: 46318. https://doi.org/10.1038/srep46318 CasaburiG Goncharenko-FosterI DuscherAA FosterJS 2017 Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions Science Reports 7 46318 https://doi.org/10.1038/srep46318 Search in Google Scholar

Castro SL, Nelman-Gonzalez M, Nickerson CA, Ott CM (2011) Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus. Applied Environmental Microbiology 77: 6368–6378. https://doi.org/10.1128/AEM.00175-11 CastroSL Nelman-GonzalezM NickersonCA OttCM 2011 Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus Applied Environmental Microbiology 77 6368 6378 https://doi.org/10.1128/AEM.00175-11 Search in Google Scholar

Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN, Awan AR, Gilbert C, Stan GB, Ellis T (2018) Burden-driven feedback control of gene expression. Natural Methods 15(5): 387–393. https://doi.org/10.1038/nmeth.4635 CeroniF BooA FuriniS GorochowskiTE BorkowskiO LadakYN AwanAR GilbertC StanGB EllisT 2018 Burden-driven feedback control of gene expression Natural Methods 15 5 387 393 https://doi.org/10.1038/nmeth.4635 Search in Google Scholar

Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ Jr, Datta K (2014) Long-term differential changes in mouse intestinal metabolomics after gamma and heavy ion radiation exposure. PLoS One 9: e87079. https://doi.org/10.1371/journal.pone.0087079 CheemaAK SumanS KaurP SinghR FornaceAJJr DattaK 2014 Long-term differential changes in mouse intestinal metabolomics after gamma and heavy ion radiation exposure PLoS One 9 e87079 https://doi.org/10.1371/journal.pone.0087079 Search in Google Scholar

Choi WG, Barker RJ, Kim SH, Swanson SJ, Gilroy S (2019) Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight. American Journal Botany 106: 123–136. doi: 10.1002/ajb2.1223 ChoiWG BarkerRJ KimSH SwansonSJ GilroyS 2019 Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight American Journal Botany 106 123 136 10.1002/ajb2.1223 Open DOISearch in Google Scholar

Clary JL, France CS, Lind K, Shi R, Alexander JS, Richards JT, Scott RS, Wang J, Lu X-H, Harrison L (2022) Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum. Frontiers in Space Technologies 3: 1032610. https://doi.org/10.3389/frspt.2022.1032610 ClaryJL FranceCS LindK ShiR AlexanderJS RichardsJT ScottRS WangJ LuX-H HarrisonL 2022 Development of an inexpensive 3D clinostat and comparison with other microgravity simulators using Mycobacterium marinum Frontiers in Space Technologies 3 1032610 https://doi.org/10.3389/frspt.2022.1032610 Search in Google Scholar

Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon CM, et al. (2021) Microbially-enhanced vanadium mining and bioremediation under micro- and Mars gravity on the International Space Station. Frontiers in Microbiology 12: 641387. https://doi.org/10.3389/fmicb.2021.641387 CockellCS SantomartinoR FinsterK WaajenAC NicholsonN LoudonCM 2021 Microbially-enhanced vanadium mining and bioremediation under micro- and Mars gravity on the International Space Station Frontiers in Microbiology 12 641387 https://doi.org/10.3389/fmicb.2021.641387 Search in Google Scholar

Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, Ennico K, Hermalyn B, Marshall W, Ricco A, Elphic RC, Goldstein D, Summy D, Bart GD, Asphaug E, Korycansky D, Landis D, Sollitt L (2010) Detection of water in the LCROSS ejecta plume. Science 330: 463–468. https://doi.org/10.1126/science.1186986 ColapreteA SchultzP HeldmannJ WoodenD ShirleyM EnnicoK HermalynB MarshallW RiccoA ElphicRC GoldsteinD SummyD BartGD AsphaugE KorycanskyD LandisD SollittL 2010 Detection of water in the LCROSS ejecta plume Science 330 463 468 https://doi.org/10.1126/science.1186986 Search in Google Scholar

Crabbé A, Nielsen-Preiss SM, Woolley CM, Barrila J, Buchanan K, McCracken J, Inglis DO, Searles SC, Nelman-Gonzalez MA, Ott CM, Wilson JW, Pierson DL, Stefanyshyn-Piper HM, Hyman LE, Nickerson CA (2013) Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One 8: e80677. https://doi.org/10.1371/journal.pone.0080677 CrabbéA Nielsen-PreissSM WoolleyCM BarrilaJ BuchananK McCrackenJ InglisDO SearlesSC Nelman-GonzalezMA OttCM WilsonJW PiersonDL Stefanyshyn-PiperHM HymanLE NickersonCA 2013 Spaceflight enhances cell aggregation and random budding in Candida albicans PLoS One 8 e80677 https://doi.org/10.1371/journal.pone.0080677 Search in Google Scholar

Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P (2010) Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environmental Microbiology 12: 1545–1564. https://doi.org/10.1111/j.1462-2920.2010.02184.x CrabbéA PyckeB Van HoudtR MonsieursP NickersonC LeysN CornelisP 2010 Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation Environmental Microbiology 12 1545 1564 https://doi.org/10.1111/j.1462-2920.2010.02184.x Search in Google Scholar

Crabbé A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H, Nickerson CA (2011) Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Applied Environmental Microbiology 77:1221–30. doi: 10.1128/AEM.01582-10 CrabbéA SchurrMJ MonsieursP MoriciL SchurrJ WilsonJW OttCM TsaprailisG PiersonDL Stefanyshyn-PiperH NickersonCA 2011 Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen Applied Environmental Microbiology 77 1221 30 10.1128/AEM.01582-10 Open DOISearch in Google Scholar

Crawford IA (2015) Lunar resources: A review. Progress in Physical Geography: Earth and Environment 39: 137–167. https://doi.org/10.1177/0309133314567585 CrawfordIA 2015 Lunar resources: A review Progress in Physical Geography: Earth and Environment 39 137 167 https://doi.org/10.1177/0309133314567585 Search in Google Scholar

Datta K, Suman S, Kallakury BV, Fornace AJ, Jr (2012) Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 7: e42224. https://doi.org/10.1371/journal.pone.0042224 DattaK SumanS KallakuryBV FornaceAJJr 2012 Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine PLoS One 7 e42224 https://doi.org/10.1371/journal.pone.0042224 Search in Google Scholar

Darlington APS, Kim J, Jimenez JI, Bates DG (2018) Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. Natural Communications 9: 695. https://doi.org/10.1038/s41467-018-02898-6 DarlingtonAPS KimJ JimenezJI BatesDG 2018 Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes Natural Communications 9 695 https://doi.org/10.1038/s41467-018-02898-6 Search in Google Scholar

Deatherage DE, Leon D, Rodriguez AE, Omar SK, Barrick JE (2018) Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res 46: 9236–9250. https://doi.org/10.1093/nar/gky751 DeatherageDE LeonD RodriguezAE OmarSK BarrickJE 2018 Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates Nucleic Acids Res 46 9236 9250 https://doi.org/10.1093/nar/gky751 Search in Google Scholar

De Micco V, Arena C, Pignalosa D, Durante M (2011) Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics 50: 1–19. https://doi.org/10.1007/s00411-010-0343-8 De MiccoV ArenaC PignalosaD DuranteM 2011 Effects of sparsely and densely ionizing radiation on plants Radiation and Environmental Biophysics 50 1 19 https://doi.org/10.1007/s00411-010-0343-8 Search in Google Scholar

De Pascale S, Arena C, Aronne G, De Micco V, Pannico A, Paradiso R, Rouphael Y (2021) Biology and crop production in space environments: Challenges and opportunities. Life Science Space Research 29: 30–37. https://doi.org/10.1016/j.lssr.2021.02.005 De PascaleS ArenaC AronneG De MiccoV PannicoA ParadisoR RouphaelY 2021 Biology and crop production in space environments: Challenges and opportunities Life Science Space Research 29 30 37 https://doi.org/10.1016/j.lssr.2021.02.005 Search in Google Scholar

Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449: 811–818. https://doi.org/10.1038/nature06245 DethlefsenL McFall-NgaiM RelmanDA 2007 An ecological and evolutionary perspective on human-microbe mutualism and disease Nature 449 811 818 https://doi.org/10.1038/nature06245 Search in Google Scholar

Duscher AA, Conesa A, Bishop M, Vroom MM, Zubizarreta SD, Foster JS (2018) Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. NPJ Microgravity 4: 25. https://doi.org/10.1038/s41526-018-0060-1 DuscherAA ConesaA BishopM VroomMM ZubizarretaSD FosterJS 2018 Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity NPJ Microgravity 4 25 https://doi.org/10.1038/s41526-018-0060-1 Search in Google Scholar

Eisen J (2015) What does the term microbiome mean? And where did it come from? A bit of a surprise. The Winnower 2: e142971.16196. doi: 10.15200/winn.142971.16196 EisenJ 2015 What does the term microbiome mean? And where did it come from? A bit of a surprise The Winnower 2 e142971.16196 10.15200/winn.142971.16196 Open DOISearch in Google Scholar

Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics 4: 457–469. https://doi.org/10.1038/nrg1088 ElenaSF LenskiRE 2003 Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation Nature Reviews Genetics 4 457 469 https://doi.org/10.1038/nrg1088 Search in Google Scholar

Ellery A (2021) Supplementing closed ecological life support systems with in-situ resources on the Moon. Life 11: 770. https://doi.org/10.3390/life11080770 ElleryA 2021 Supplementing closed ecological life support systems with in-situ resources on the Moon Life 11 770 https://doi.org/10.3390/life11080770 Search in Google Scholar

Foster JS, Wheeler RM, Pamphile R (2014) Host-microbe interactions in microgravity: assessment and implications. Life (Basel) 4(2): 250–266. https://doi.org/10.3390/life4020250 FosterJS WheelerRM PamphileR 2014 Host-microbe interactions in microgravity: assessment and implications Life (Basel) 4 2 250 266 https://doi.org/10.3390/life4020250 Search in Google Scholar

Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A (2020) Space radiation biology for “living in space”. BioMed Research International 2020: 4703286. https://doi.org/10.1155/2020/4703286 FurukawaS NagamatsuA NenoiM FujimoriA KakinumaS KatsubeT WangB TsuruokaC ShiraiT NakamuraAJ Sakaue-SawanoA MiyawakiA HaradaH KobayashiM KobayashiJ KuniedaT FunayamaT SuzukiM MiyamotoT HidemaJ YoshidaY TakahashiA 2020 Space radiation biology for “living in space” BioMed Research International 2020 4703286. https://doi.org/10.1155/2020/4703286 Search in Google Scholar

Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, Ye C, Edwards H, Chen J, Chen W, Liu L (2019) Programmable biomolecular switches for rewiring flux in Escherichia coli. Nature Communications, 10: 3751. https://doi.org/10.1038/s41467-019-11793-7 GaoC HouJ XuP GuoL ChenX HuG YeC EdwardsH ChenJ ChenW LiuL 2019 Programmable biomolecular switches for rewiring flux in Escherichia coli Nature Communications 10 3751 https://doi.org/10.1038/s41467-019-11793-7 Search in Google Scholar

Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR et al. (2019) The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364: 6436. https://doi.org/10.1126/science.aau8650 Garrett-BakelmanFE DarshiM GreenSJ GurRC LinL MaciasBR 2019 The NASA twins study: a multidimensional analysis of a year-long human spaceflight Science 364 6436 https://doi.org/10.1126/science.aau8650 Search in Google Scholar

Gateway https://www.nasa.gov/mission/gateway/ visited November 12th 2023. Gateway https://www.nasa.gov/mission/gateway/ visited November 12th 2023. Search in Google Scholar

Gladstone GR, Hurley DM, Retherford KD, Feldman PD, Pryor WR, Chaufray JY, et al. (2010) LRO-LAMP observations of the LCROSS impact plume. Science 330: 472–476. https://doi.org/10.1126/science.1186474 GladstoneGR HurleyDM RetherfordKD FeldmanPD PryorWR ChaufrayJY 2010 LRO-LAMP observations of the LCROSS impact plume Science 330 472 476 https://doi.org/10.1126/science.1186474 Search in Google Scholar

Godia F, Albiol J, Perez J, Creus N, Cabello F, Montras A, Masot A, Lasseur, C (2004) The MELISSA pilot plant facility as an integration test-bed for advanced life support systems. Advanced Space Research 34: 1483–1493. https://doi.org/10.1016/j.asr.2003.08.038 GodiaF AlbiolJ PerezJ CreusN CabelloF MontrasA MasotA LasseurC 2004 The MELISSA pilot plant facility as an integration test-bed for advanced life support systems Advanced Space Research 34 1483 1493 https://doi.org/10.1016/j.asr.2003.08.038 Search in Google Scholar

Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R (2015) Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech 5: 653–661. https://doi.org/10.1007/s13205-014-0263-4. GopalakrishnanS SrinivasV PrakashB SathyaA VijayabharathiR 2015 Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules 3 Biotech 5 653 661 https://doi.org/10.1007/s13205-014-0263-4. Search in Google Scholar

Großkopf T and Soyer OS (2014) Synthetic microbial communities. Current Opinions on Microbiology 18: 72–77. https://doi.org/10.1016/j.mib.2014.02.002 GroßkopfT SoyerOS 2014 Synthetic microbial communities Current Opinions on Microbiology 18 72 77 https://doi.org/10.1016/j.mib.2014.02.002 Search in Google Scholar

Guo X, Li Z, Wang X, Wang J, Chala J, Lu Y, Zhang H (2019) De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering. Biotechnology and Bioengineering. 116: 3349–3359. doi: 10.1002/bit.27168 GuoX LiZ WangX WangJ ChalaJ LuY ZhangH 2019 De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering Biotechnology and Bioengineering. 116 3349 3359 10.1002/bit.27168 Open DOISearch in Google Scholar

Han Y and Zhang F (2020) Control strategies to manage trade-offs during microbial production. Current Opinions on Biotechnology 66: 158–164. https://doi.org/10.1016/j.copbio.2020.07.004 HanY ZhangF 2020 Control strategies to manage trade-offs during microbial production Current Opinions on Biotechnology 66 158 164 https://doi.org/10.1016/j.copbio.2020.07.004 Search in Google Scholar

Hariom SK, Ravi A, Mohan GR, Pochiraju HD, Chattopadhyay S, Nelson EJR (2021) Animal physiology across the gravity continuum. Acta Astronautica 178: 522–535. https://doi.org/https://doi.org/10.1016/j.actaastro.2020.09.044 HariomSK RaviA MohanGR PochirajuHD ChattopadhyayS NelsonEJR 2021 Animal physiology across the gravity continuum Acta Astronautica 178 522 535 https://doi.org/https://doi.org/10.1016/j.actaastro.2020.09.044 Search in Google Scholar

Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman WL, Feltus FA, Kiss JZ, Medina FJ (2019) RNAseq analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation during spaceflight. Frontiers in Plant Science 10: 1529. https://doi.org/10.3389/fpls.2019.01529 HerranzR VandenbrinkJP VillacampaA ManzanoA PoehlmanWL FeltusFA KissJZ MedinaFJ 2019 RNAseq analysis of the response of Arabidopsis thaliana to fractional gravity under blue-light stimulation during spaceflight Frontiers in Plant Science 10 1529 https://doi.org/10.3389/fpls.2019.01529 Search in Google Scholar

Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiology and Molecular Biology Reviews 74: 121–156. https://doi.org/10.1128/mmbr.00016-09 HorneckG KlausDM MancinelliRL 2010 Space microbiology Microbiology and Molecular Biology Reviews 74 121 156 https://doi.org/10.1128/mmbr.00016-09 Search in Google Scholar

Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK (2013) Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiation Research 179: 383–392. https://doi.org/10.1667/RR3308.2 HuntCR RamnarainD HorikoshiN IyengarP PanditaRK ShayJW PanditaTK 2013 Histone modifications and DNA double-strand break repair after exposure to ionizing radiations Radiation Research 179 383 392 https://doi.org/10.1667/RR3308.2 Search in Google Scholar

Ilgrande C, Mastroleo F, Christiaen MER, Lindeboom REF, Prat D, Van Hoey O et al. (2019). Reactivation of microbial strains and synthetic communities after a spaceflight to the International Space Station: corroborating the feasibility of essential conversions in the MELiSSA loop. Astrobiology 19: 1167–1176. https://doi.org/10.1089/ast.2018.1973 IlgrandeC MastroleoF ChristiaenMER LindeboomREF PratD Van HoeyO 2019 Reactivation of microbial strains and synthetic communities after a spaceflight to the International Space Station: corroborating the feasibility of essential conversions in the MELiSSA loop Astrobiology 19 1167 1176 https://doi.org/10.1089/ast.2018.1973 Search in Google Scholar

Jansson JK and Hofmockel KS (2020) Soil microbiomes and climate change. Nature Reviews Microbiology 18: 35–46. https://doi.org/10.1038/s41579-019-0265-7 JanssonJK HofmockelKS 2020 Soil microbiomes and climate change Nature Reviews Microbiology 18 35 46 https://doi.org/10.1038/s41579-019-0265-7 Search in Google Scholar

Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends in Ecology & Evolution 19: 189–197. https://doi.org/10.1016/j.tree.2004.01.008 JessupCM KassenR FordeSE KerrB BucklingA RaineyPB BohannanBJM 2004 Big questions, small worlds: microbial model systems in ecology Trends in Ecology & Evolution 19 189 197 https://doi.org/10.1016/j.tree.2004.01.008 Search in Google Scholar

Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, Jiang Y (2019) Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities. Frontiers in Genetics 10: 995. https://doi.org/10.3389/fgene.2019.00995 JiangD ArmourCR HuC MeiM TianC SharptonTJ JiangY 2019 Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities Frontiers in Genetics 10 995 https://doi.org/10.3389/fgene.2019.00995 Search in Google Scholar

Juergensmeyer MA, Juergensmeyer EA, Guikema JA (1999) Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Science Technology 12: 41–47. https://www.ncbi.nlm.nih.gov/pubmed/11543359 JuergensmeyerMA JuergensmeyerEA GuikemaJA 1999 Long-term exposure to spaceflight conditions affects bacterial response to antibiotics Microgravity Science Technology 12 41 47 https://www.ncbi.nlm.nih.gov/pubmed/11543359 Search in Google Scholar

Kaksonen AH, Deng X, Bohu T, Zea L, Khaleque HN, Gumulya Y, Boxall NJ, Morris C, Cheng KY (2020) Prospective directions for biohydrometallurgy. Hydrometallurgy 195: 105376. https://doi.org/https://doi.org/10.1016/j.hydromet.2020.105376 KaksonenAH DengX BohuT ZeaL KhalequeHN GumulyaY BoxallNJ MorrisC ChengKY 2020 Prospective directions for biohydrometallurgy Hydrometallurgy 195 105376 https://doi.org/https://doi.org/10.1016/j.hydromet.2020.105376 Search in Google Scholar

Karouia F, Peyvan K, Pohorille A (2017) Toward biotechnology in space: high-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances 35: 905–932. https://doi.org/10.1016/j.biotechadv.2017.04.003 KarouiaF PeyvanK PohorilleA 2017 Toward biotechnology in space: high-throughput instruments for in situ biological research beyond Earth Biotechnology Advances 35 905 932 https://doi.org/10.1016/j.biotechadv.2017.04.003 Search in Google Scholar

Kim JH (2019) Chromatin remodeling and epigenetic regulation in plant DNA damage repair. International Journal of Molecular Science 20: 4093. https://doi.org/10.3390/ijms20174093 KimJH 2019 Chromatin remodeling and epigenetic regulation in plant DNA damage repair International Journal of Molecular Science 20 4093 https://doi.org/10.3390/ijms20174093 Search in Google Scholar

Klaus DM and Howard HN (2006) Antibiotic efficacy and microbial virulence during space flight. Trends in Biotechnology 24: 131–136. https://doi.org/10.1016/j.tibtech.2006.01.008 KlausDM HowardHN 2006 Antibiotic efficacy and microbial virulence during space flight Trends in Biotechnology 24 131 136 https://doi.org/10.1016/j.tibtech.2006.01.008 Search in Google Scholar

Kopp J, Slouka C, Spadiut O, Herwig C (2019) The rocky road from fed-batch to continuous processing with E. coli. Frontiers in Bioengineering and Biotechnology 7: 328. https://doi.org/10.3389/fbioe.2019.00328 KoppJ SloukaC SpadiutO HerwigC 2019 The rocky road from fed-batch to continuous processing with E. coli Frontiers in Bioengineering and Biotechnology 7 328 https://doi.org/10.3389/fbioe.2019.00328 Search in Google Scholar

Kordyum E and Hasenstein KH (2021) Plant biology for space exploration - building on the past, preparing for the future. Life Science Space Research (Amsterdam) 29: 1–7. https://doi.org/10.1016/j.lssr.2021.01.003 KordyumE HasensteinKH 2021 Plant biology for space exploration - building on the past, preparing for the future Life Science Space Research (Amsterdam) 29 1 7 https://doi.org/10.1016/j.lssr.2021.01.003 Search in Google Scholar

Kyriacou MC, De Pascale S, Kyratzis A, Rouphael Y (2017) Microgreens as a component of space life support systems: a cornucopia of functional food. Frontiers in Plant Science 8: 1587. https://doi.org/10.3389/fpls.2017.01587 KyriacouMC De PascaleS KyratzisA RouphaelY 2017 Microgreens as a component of space life support systems: a cornucopia of functional food Frontiers in Plant Science 8 1587 https://doi.org/10.3389/fpls.2017.01587 Search in Google Scholar

Lam C-W, Castranova V, Driscoll K, Warheit D, Ryder V, Zhang Y et al. (2023) A review of pulmonary neutrophilia and insights into the key role of neutrophils in particle-induced pathogenesis in the lung from animal studies of lunar dusts and other poorly soluble dust particles. Critical Review of Toxicology Oct 18: 1–39 doi: 10.1080/10408444.2023.2258925 LamC-W CastranovaV DriscollK WarheitD RyderV ZhangY 2023 A review of pulmonary neutrophilia and insights into the key role of neutrophils in particle-induced pathogenesis in the lung from animal studies of lunar dusts and other poorly soluble dust particles Critical Review of Toxicology Oct 18 1 39 10.1080/10408444.2023.2258925 Open DOISearch in Google Scholar

Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radical Biological Medicine 35: 9–16. https://doi.org/10.1016/s0891-5849(03)00186-2 LawlerJM SongW DemareeSR 2003 Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle Free Radical Biological Medicine 35 9 16 https://doi.org/10.1016/s0891-5849(03)00186-2 Search in Google Scholar

Lederberg J and McCray A (2001) 'Ome sweet 'omics--a genealogical treasury of words. Scientist 15: 8–8. LederbergJ McCrayA 2001 'Ome sweet 'omics--a genealogical treasury of words Scientist 15 8 8 Search in Google Scholar

Lee MD, O’Rourke A, Lorenzi H, Bebout BM, Dupont CL, Everroad RC (2021) Reference-guided metagenomics reveals genome-level evidence of potential microbial transmission from the ISS environment to an astronaut’s microbiome. iScience 24: 102114. https://doi.org/10.1016/j.isci.2021.102114 LeeMD O’RourkeA LorenziH BeboutBM DupontCL EverroadRC 2021 Reference-guided metagenomics reveals genome-level evidence of potential microbial transmission from the ISS environment to an astronaut’s microbiome iScience 24 102114 https://doi.org/10.1016/j.isci.2021.102114 Search in Google Scholar

Lee S and van Riessen A (2022) A review on geopolymer technology for lunar base construction. Materials (Basel) 15: 4516. doi: 10.3390/ma15134516 LeeS van RiessenA 2022 A review on geopolymer technology for lunar base construction Materials (Basel) 15 4516 10.3390/ma15134516 Open DOISearch in Google Scholar

Lenski RE and Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of Science USA 91: 6808–6814. https://doi.org/10.1073/pnas.91.15.6808 LenskiRE TravisanoM 1994 Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations Proceedings of the National Academy of Science USA 91 6808 6814 https://doi.org/10.1073/pnas.91.15.6808 Search in Google Scholar

Leys NM, Hendrickx L, De Boever P, Baatout S, Mergeay M (2004) Space flight effects on bacterial physiology. Journal of Biologically Regulated Homeostasis Agents 18: 193–199. https://www.ncbi.nlm.nih.gov/pubmed/15471227 LeysNM HendrickxL De BoeverP BaatoutS MergeayM 2004 Space flight effects on bacterial physiology Journal of Biologically Regulated Homeostasis Agents 18 193 199 https://www.ncbi.nlm.nih.gov/pubmed/15471227 Search in Google Scholar

Li C, Hu H, Yang M-F, Pei Z-Y, Zhou Q, Ren X et al. (2021) Characteristics of the lunar samples returned by the Chang’E-5 mission. National Science Review 9: nwab188. https://doi.org/10.1093/nsr/nwab188 LiC HuH YangM-F PeiZ-Y ZhouQ RenX 2021 Characteristics of the lunar samples returned by the Chang’E-5 mission National Science Review 9 nwab188 https://doi.org/10.1093/nsr/nwab188 Search in Google Scholar

Li J, Liu F, Wang Q, Ge P, Woo PC, Yan J, Zhao Y, Gao GF, Liu CH, Liu C (2014) Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability. Science Report 4: 6216. https://doi.org/10.1038/srep06216 LiJ LiuF WangQ GeP WooPC YanJ ZhaoY GaoGF LiuCH LiuC 2014 Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability Science Report 4 6216 https://doi.org/10.1038/srep06216 Search in Google Scholar

Liao AC, Craver BM, Tseng BP, Tran KK, Parihar VK, Acharya MM, Limoli CL (2013) Mitochondrial-targeted human catalase affords neuroprotection from proton irradiation. Radiation Research 180: 1–6. doi: 10.1667/RR3339.1 LiaoAC CraverBM TsengBP TranKK PariharVK AcharyaMM LimoliCL 2013 Mitochondrial-targeted human catalase affords neuroprotection from proton irradiation Radiation Research 180 1 6 10.1667/RR3339.1 Open DOISearch in Google Scholar

Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR (2007) Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiation Environmental Biophysics 46: 167–172. https://doi.org/10.1007/s00411-006-0077-9 LimoliCL GiedzinskiE BaureJ RolaR FikeJR 2007 Redox changes induced in hippocampal precursor cells by heavy ion irradiation Radiation Environmental Biophysics 46 167 172 https://doi.org/10.1007/s00411-006-0077-9 Search in Google Scholar

Ling Z, Jolliff BL, Wang A, Li C, Liu J, Zhang J, et al. (2015) Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nature Communications 6: 8880. doi: 10.1038/ncomms9880 LingZ JolliffBL WangA LiC LiuJ ZhangJ 2015 Correlated compositional and mineralogical investigations at the Chang’e-3 landing site Nature Communications 6 8880 10.1038/ncomms9880 Open DOISearch in Google Scholar

Liu D and Zhang F (2018) Metabolic feedback circuits provide rapid control of metabolite dynamics. ACS Synthetic Biology 7: 347–356. https://doi.org/10.1021/acssynbio.7b00342 LiuD ZhangF 2018 Metabolic feedback circuits provide rapid control of metabolite dynamics ACS Synthetic Biology 7 347 356 https://doi.org/10.1021/acssynbio.7b00342 Search in Google Scholar

Liu Y, Wang E (2008) Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genomics Proteomics Bioinformatics 6: 29–41. https://doi.org/10.1016/S1672-0229(08)60018-2 LiuY WangE 2008 Transcriptional analysis of normal human fibroblast responses to microgravity stress Genomics Proteomics Bioinformatics 6 29 41 https://doi.org/10.1016/S1672-0229(08)60018-2 Search in Google Scholar

Liu Z, Luo G, Du R, Sun W, Li J, Lan H, Chen P, Yuan X, Cao D, Li Y, Liu C, Liang S, Jin X, Yang R, Bi Y, Han Y, Cao P, Zhao W, Ling S, Li Y (2020) Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11: 807–819. https://doi.org/10.1080/19490976.2019.1710091 LiuZ LuoG DuR SunW LiJ LanH ChenP YuanX CaoD LiY LiuC LiangS JinX YangR BiY HanY CaoP ZhaoW LingS LiY 2020 Effects of spaceflight on the composition and function of the human gut microbiota Gut Microbes 11 807 819 https://doi.org/10.1080/19490976.2019.1710091 Search in Google Scholar

MacDonald JG, Rodriguez K, Quirk S (2020) An oxygen delivery polymer enhances seed germination in a Martian-like environment. Astrobiology 20: 846–863. http://doi.org/10.1089/ast.2019.2056 MacDonaldJG RodriguezK QuirkS 2020 An oxygen delivery polymer enhances seed germination in a Martian-like environment Astrobiology 20 846 863 http://doi.org/10.1089/ast.2019.2056 Search in Google Scholar

Mackenroth B and Alani E (2021) Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA Repair 97: 103018. https://doi.org/10.1016/j.dnarep.2020.103018 MackenrothB AlaniE 2021 Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity DNA Repair 97 103018 https://doi.org/10.1016/j.dnarep.2020.103018 Search in Google Scholar

Malyarchuk S, Brame KL, Youngblood R, Shi R, Harrison L (2004) Two clustered 8-oxo-7,8-dihydroguanine (8-oxodG) lesions increase the point mutation frequency of 8-oxodG, but do not result in double strand breaks or deletions in Escherichia coli. Nucleic Acids Research 32: 5721–5731. https://doi.org/10.1093/nar/gkh911 MalyarchukS BrameKL YoungbloodR ShiR HarrisonL 2004 Two clustered 8-oxo-7,8-dihydroguanine (8-oxodG) lesions increase the point mutation frequency of 8-oxodG, but do not result in double strand breaks or deletions in Escherichia coli Nucleic Acids Research 32 5721 5731 https://doi.org/10.1093/nar/gkh911 Search in Google Scholar

Mandal A, Dutta A, Das R, Mukherjee J (2021) Role of intertidal microbial communities in carbon dioxide sequestration and pollutant removal: a review. Marine Pollution Bulletin 170: 112626. https://doi.org/10.1016/j.marpolbul.2021.112626 MandalA DuttaA DasR MukherjeeJ 2021 Role of intertidal microbial communities in carbon dioxide sequestration and pollutant removal: a review Marine Pollution Bulletin 170 112626 https://doi.org/10.1016/j.marpolbul.2021.112626 Search in Google Scholar

Manti L (2006) Does reduced gravity alter cellular response to ionizing radiation? Radiation Environmental Biophysics 45: 1–8. https://doi.org/10.1007/s00411-006-0037-4 MantiL 2006 Does reduced gravity alter cellular response to ionizing radiation? Radiation Environmental Biophysics 45 1 8 https://doi.org/10.1007/s00411-006-0037-4 Search in Google Scholar

Manzano A, Herranz R, den Toom LA, Te Slaa S, Borst G, Visser M, Medina FJ, van Loon J (2018) Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development. NPJ Microgravity 4: 9. https://doi.org/10.1038/s41526-018-0041-4 ManzanoA HerranzR den ToomLA Te SlaaS BorstG VisserM MedinaFJ van LoonJ 2018 Novel, Moon and Mars, partial gravity simulation paradigms and their effects on the balance between cell growth and cell proliferation during early plant development NPJ Microgravity 4 9 https://doi.org/10.1038/s41526-018-0041-4 Search in Google Scholar

Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Holley J, Sridharan V, Boerma M, Tackett AJ, Willey JS, Pecaut MJ, & Delp MD (2020) Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model. FASEB Journal 34: 15516–15530. https://doi.org/10.1096/fj.202001754R MaoXW NishiyamaNC ByrumSD StanboulyS JonesT HolleyJ SridharanV BoermaM TackettAJ WilleyJS PecautMJ DelpMD 2020 Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model FASEB Journal 34 15516 15530 https://doi.org/10.1096/fj.202001754R Search in Google Scholar

Maughan H, Nicholson WL (2011) Increased fitness and alteration of metabolic pathways during Bacillus subtilis evolution in the laboratory. Applied Environmental Microbiology 77: 4105–4118. https://doi.org/10.1128/AEM.00374-11 MaughanH NicholsonWL 2011 Increased fitness and alteration of metabolic pathways during Bacillus subtilis evolution in the laboratory Applied Environmental Microbiology 77 4105 4118 https://doi.org/10.1128/AEM.00374-11 Search in Google Scholar

McKay DS, Heiken G, Basu A, Blanford G, Simon S, Reedy R, French BM, Papike J (1991) The lunar regolith. In: Lunar Sourcebook: A User’s Guide to the Moon. Eds. GH Heiken, DT Vaniman, BM French. Chapter 7: 285–356. Cambridge University Press. McKayDS HeikenG BasuA BlanfordG SimonS ReedyR FrenchBM PapikeJ 1991 The lunar regolith In: Lunar Sourcebook: A User’s Guide to the Moon Eds. HeikenGH VanimanDT FrenchBM Chapter 7: 285 356 Cambridge University Press Search in Google Scholar

McNulty MJ, Xiong YM, Yates K, Karuppanan K, Hilzinger JM, Berliner AJ, Delzio J, Arkin AP, Lane NE, Nandi S, McDonald KA (2021) Molecular pharming to support human life on the Moon, Mars, and beyond. Critical Review of Biotechnology 41: 849–864. https://doi.org/10.1080/07388551.2021.1888070 McNultyMJ XiongYM YatesK KaruppananK HilzingerJM BerlinerAJ DelzioJ ArkinAP LaneNE NandiS McDonaldKA 2021 Molecular pharming to support human life on the Moon, Mars, and beyond Critical Review of Biotechnology 41 849 864 https://doi.org/10.1080/07388551.2021.1888070 Search in Google Scholar

Menezes AA, Montague MG, Cumbers J, Hogan JA, Arkin AP (2015) Grand challenges in space synthetic biology. Journal of the Royal Society of the Interface 12: 20150803. https://doi.org/10.1098/rsif.2015.0803 MenezesAA MontagueMG CumbersJ HoganJA ArkinAP 2015 Grand challenges in space synthetic biology Journal of the Royal Society of the Interface 12 20150803. https://doi.org/10.1098/rsif.2015.0803 Search in Google Scholar

Miousse IR, Kutanzi KR, Koturbash I (2017) Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. International Journal of Radiation Biology 93: 457–469. https://doi.org/10.1080/09553002.2017.1287454 MiousseIR KutanziKR KoturbashI 2017 Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications International Journal of Radiation Biology 93 457 469 https://doi.org/10.1080/09553002.2017.1287454 Search in Google Scholar

Moore S, Stanley FK, Goodarzi AA (2014) The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task. DNA Repair 17: 64–73. https://doi.org/10.1016/j.dnarep.2014.01.014 MooreS StanleyFK GoodarziAA 2014 The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task DNA Repair 17 64 73 https://doi.org/10.1016/j.dnarep.2014.01.014 Search in Google Scholar

Morey-Holton ER (2003) The impact of gravity on life. In: Evolution on Planet Earth. Eds LJ Rothschild and AM Lister. Chapter 9: 143–159. London Academic Press. doi:10.1016/B978-012598655-7/50036-7 Morey-HoltonER 2003 The impact of gravity on life In: Evolution on Planet Earth Eds RothschildLJ ListerAM Chapter 9: 143 159 London Academic Press 10.1016/B978-012598655-7/50036-7 Open DOISearch in Google Scholar

Morrison MD, Thissen JB, Karouia F, Mehta S, Urbaniak C, Venkateswaran K, Smith DJ, Jaing C (2021) Investigation of spaceflight induced changes to astronaut microbiomes. Frontiers in Microbiology 12: 659179. https://doi.org/10.3389/fmicb.2021.659179 MorrisonMD ThissenJB KarouiaF MehtaS UrbaniakC VenkateswaranK SmithDJ JaingC 2021 Investigation of spaceflight induced changes to astronaut microbiomes Frontiers in Microbiology 12 659179 https://doi.org/10.3389/fmicb.2021.659179 Search in Google Scholar

Mujah D, Shahin MH, Cheng L (2016) State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal 34: 524–537, https://doi.org/10.1080/01490451.2016.1225866 MujahD ShahinMH ChengL 2016 State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization Geomicrobiology Journal 34 524 537 https://doi.org/10.1080/01490451.2016.1225866 Search in Google Scholar

NASA Technology Readiness Definition Microsoft Word - TRL Definitions.doc (nasa.gov) visited 11/8/2023. NASA Technology Readiness Definition Microsoft Word - TRL Definitions.doc (nasa.gov) visited 11/8/2023 Search in Google Scholar

NASA Science Working Group Life Beyond Low Earth Orbit (2018) Report of a science working group to the nasa human exploration and operations mission directorate and space life and physical sciences division. Available: https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=625219/solicitationId=%7B87B32BFC-87BB-9A8E-51FA-B884B658D0A5%7D/viewSolicitationDocument=1/LBLEO%20Report%2001082018.pdf NASA Science Working Group Life Beyond Low Earth Orbit 2018 Report of a science working group to the nasa human exploration and operations mission directorate and space life and physical sciences division Available: https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=625219/solicitationId=%7B87B32BFC-87BB-9A8E-51FA-B884B658D0A5%7D/viewSolicitationDocument=1/LBLEO%20Report%2001082018.pdf Search in Google Scholar

National Academies of Sciences, Engineering & Medicine. (2018) A midterm assessment of implementation of the decadal survey on life and physical sciences research at NASA. The National Academies Press. https://doi.org/doi:10.17226/24966 National Academies of Sciences, Engineering & Medicine 2018 A midterm assessment of implementation of the decadal survey on life and physical sciences research at NASA The National Academies Press https://doi.org/doi:10.17226/24966 Search in Google Scholar

Nicholson WL, Ricco AJ, Agasid E, Beasley C, Diaz-Aguado M, Ehrenfreund P, Friedericks C, Ghassemieh S, Henschke M, Hines JW, Kitts C, Luzzi E, Ly D, Mai N, Mancinelli R, McIntyre M, Minelli G, Neumann M, Parra M, Piccini M, Rasay RM, Ricks R, Santos O, Schooley A, Squires D, Timucin L, Yost B, Young A (2011) The O/OREOS mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload. Astrobiology 11: 951–958. https://doi.org/10.1089/ast.2011.0714 NicholsonWL RiccoAJ AgasidE BeasleyC Diaz-AguadoM EhrenfreundP FriedericksC GhassemiehS HenschkeM HinesJW KittsC LuzziE LyD MaiN MancinelliR McIntyreM MinelliG NeumannM ParraM PicciniM RasayRM RicksR SantosO SchooleyA SquiresD TimucinL YostB YoungA 2011 The O/OREOS mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload Astrobiology 11 951 958 https://doi.org/10.1089/ast.2011.0714 Search in Google Scholar

Nickerson CA, Ott CA, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infection and Immunity 68:3147–3152. doi: 10.1128/IAI.68.6.3147-3152.2000 NickersonCA OttCA MisterSJ MorrowBJ Burns-KeliherL PiersonDL 2000 Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence Infection and Immunity 68 3147 3152 10.1128/IAI.68.6.3147-3152.2000 Open DOISearch in Google Scholar

Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiological Molecular Biology Review 68: 345–361. https://doi.org/10.1128/MMBR.68.2.345-361.2004 NickersonCA OttCM WilsonJW RamamurthyR PiersonDL 2004 Microbial responses to microgravity and other low-shear environments Microbiological Molecular Biology Review 68 345 361 https://doi.org/10.1128/MMBR.68.2.345-361.2004 Search in Google Scholar

Noble S (2013) The lunar regolith. NASA Technical Reports Server Document ID 20090026015 M09-0381_Final Paper.pdf (nasa.gov) NobleS 2013 The lunar regolith NASA Technical Reports Server Document ID 20090026015 M09-0381_Final Paper.pdf (nasa.gov) Search in Google Scholar

Norbury JW, Slaba TC, Aghara S, Badavi FF, Blattnig SR, Clowdsley MS, Heilbronn LH, Lee K, Maung KM, Mertens CJ, Miller J, Norman RB, Sandridge CA, Singleterry R, Sobolevsky N, Spangler JL, Townsend LW, Werneth CM, Whitman K, Wilson JW, Xu SX, Zeitlin C (2019) Advances in space radiation physics and transport at NASA. Life Science Space Research 22: 98–124. https://doi.org/10.1016/j.lssr.2019.07.003 NorburyJW SlabaTC AgharaS BadaviFF BlattnigSR ClowdsleyMS HeilbronnLH LeeK MaungKM MertensCJ MillerJ NormanRB SandridgeCA SingleterryR SobolevskyN SpanglerJL TownsendLW WernethCM WhitmanK WilsonJW XuSX ZeitlinC 2019 Advances in space radiation physics and transport at NASA Life Science Space Research 22 98 124 https://doi.org/10.1016/j.lssr.2019.07.003 Search in Google Scholar

Novikova N, Deshevaya E, Levinskikh M, Polikarpov N, Poddubko S, Gusev O, Sychev V (2015) Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the “Expose-R” experiment. International Journal of Astrobiology 14: 137–142. https://doi.org/doi:10.1017/S1473550414000731 NovikovaN DeshevayaE LevinskikhM PolikarpovN PoddubkoS GusevO SychevV 2015 Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the “Expose-R” experiment International Journal of Astrobiology 14 137 142 https://doi.org/doi:10.1017/S1473550414000731 Search in Google Scholar

Odeh R and Guy C (2017) Gardening for therapeutic people-plant interactions during long-duration space missions. Open Agriculture 2: 1 – 13. OdehR GuyC 2017 Gardening for therapeutic people-plant interactions during long-duration space missions Open Agriculture 2 1 13 Search in Google Scholar

Ojuederie OB and Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health 14: 1504. https://doi.org/10.3390/ijerph14121504 OjuederieOB BabalolaOO 2017 Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review International Journal of Environmental Research and Public Health 14 1504 https://doi.org/10.3390/ijerph14121504 Search in Google Scholar

Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microbiology and Ecology 47: 133–136. https://doi.org/10.1007/s00248-003-1038-3 OttCM BruceRJ PiersonDL 2004 Microbial characterization of free floating condensate aboard the Mir space station Microbiology and Ecology 47 133 136 https://doi.org/10.1007/s00248-003-1038-3 Search in Google Scholar

Ott CM, Crabbé A, Wilson JW, Barrila J, Castro-Wallace SL, Nickerson CA (2020) Microbial stress: spaceflight-induced alterations in microbial virulence and infectious disease risks for the crew. In: Stress Challenges and Immunity in Space. Eds. Choukèr A. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_18 OttCM CrabbéA WilsonJW BarrilaJ Castro-WallaceSL NickersonCA 2020 Microbial stress: spaceflight-induced alterations in microbial virulence and infectious disease risks for the crew In: Stress Challenges and Immunity in Space Eds. ChoukèrA. Springer Cham https://doi.org/10.1007/978-3-030-16996-1_18 Search in Google Scholar

Orsini SS, Lewis AM, Rice KC (2017) Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. NPJ Microgravity 3: 4. https://doi.org/10.1038/s41526-016-0006-4 OrsiniSS LewisAM RiceKC 2017 Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression NPJ Microgravity 3 4 https://doi.org/10.1038/s41526-016-0006-4 Search in Google Scholar

Ou X, Long L, Zhang Y, Xue Y, Liu J, Lin X, Liu B (2009) Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutation Research 662: 44–53. https://doi.org/10.1016/j.mrfmmm.2008.12.004 OuX LongL ZhangY XueY LiuJ LinX LiuB 2009 Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.) Mutation Research 662 44 53 https://doi.org/10.1016/j.mrfmmm.2008.12.004 Search in Google Scholar

Overbey EG, da Silveira WA, Stanbouly S, Nishiyama NC, Roque-Torres GD, Pecaut MJ, Zawieja DC, Wang C, Willey JS, Delp MD, Hardiman G, Mao XW (2019) Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina. Science Report 9: 13304. https://doi.org/10.1038/s41598-019-49453-x OverbeyEG da SilveiraWA StanboulyS NishiyamaNC Roque-TorresGD PecautMJ ZawiejaDC WangC WilleyJS DelpMD HardimanG MaoXW 2019 Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina Science Report 9 13304 https://doi.org/10.1038/s41598-019-49453-x Search in Google Scholar

Padgen MR, Liddell LC, Bhardwaj SR, Gentry D, Marina D, Parra M, Boone T, Tan M, Ellingson L, Rademacher A, Benton J, Schooley A, Mousavi A, Friedericks C, Hanel RP, Ricco AJ, Bhattacharya S, Maria SRS (2023) BioSentinel: a biofluidic nanosatellite monitoring microbial growth and activity in deep space. Astrobiology 23: 6, 637–647. https://doi.org/10.1089/ast.2020.2305 PadgenMR LiddellLC BhardwajSR GentryD MarinaD ParraM BooneT TanM EllingsonL RademacherA BentonJ SchooleyA MousaviA FriedericksC HanelRP RiccoAJ BhattacharyaS MariaSRS 2023 BioSentinel: a biofluidic nanosatellite monitoring microbial growth and activity in deep space Astrobiology 23 6 637 647 https://doi.org/10.1089/ast.2020.2305 Search in Google Scholar

Padgen MR, Lera MP, Parra MP, Ricco AJ, Chin M, Chinn TN, Cohen A, Friedericks CR, Henschke MB, Snyder TV, Spremo SM, Wang JH, Matin AC (2020). EcAMSat spaceflight measurements of the role of sigma(s) in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Science Space Research 24: 18–24. https://doi.org/10.1016/j.lssr.2019.10.007 PadgenMR LeraMP ParraMP RiccoAJ ChinM ChinnTN CohenA FriedericksCR HenschkeMB SnyderTV SpremoSM WangJH MatinAC 2020 EcAMSat spaceflight measurements of the role of sigma(s) in antibiotic resistance of stationary phase Escherichia coli in microgravity Life Science Space Research 24 18 24 https://doi.org/10.1016/j.lssr.2019.10.007 Search in Google Scholar

Paige DA, Foote MC, Greenhagen BT, Schofield JT, Calcutt S, Vasavada AR, Preston DJ, Taylor FW, Allen CC, Snook KJ, Jakosky BM, Murray BC, Soderblom LA, Jau B, Loring S, Bulharowski J, Bowles NE, Thomas IR, Sullivan MT, Avis C, de Jong EM, Hartford W, McCleese DJ (2010) The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Science Reviews 150: 125–160. https://doi.org/10.1007/s11214-009-9529-2 PaigeDA FooteMC GreenhagenBT SchofieldJT CalcuttS VasavadaAR PrestonDJ TaylorFW AllenCC SnookKJ JakoskyBM MurrayBC SoderblomLA JauB LoringS BulharowskiJ BowlesNE ThomasIR SullivanMT AvisC de JongEM HartfordW McCleeseDJ 2010 The lunar reconnaissance orbiter diviner lunar radiometer experiment Space Science Reviews 150 125 160 https://doi.org/10.1007/s11214-009-9529-2 Search in Google Scholar

Paradiso R, Ceriello A, Pannico A, Sorrentino S, Palladino M, Giordano M, Fortezza R, De Pascale S (2020) Design of a module for cultivation of tuberous plants in microgravity: the esa project “Precursor of Food Production Unit” (PFPU). Frontiers in Plant Science 11: 417. https://doi.org/10.3389/fpls.2020.00417 ParadisoR CerielloA PannicoA SorrentinoS PalladinoM GiordanoM FortezzaR De PascaleS 2020 Design of a module for cultivation of tuberous plants in microgravity: the esa project “Precursor of Food Production Unit” (PFPU) Frontiers in Plant Science 11 417 https://doi.org/10.3389/fpls.2020.00417 Search in Google Scholar

Parfenov VA, Khesuani YD, Petrov SV, Karalkin PA, Koudan EV, Nezhurina EK, et al. (2020) Magnetic levitational bioassembly of 3D tissue construct in space. Scientific Advances 6: eaba4174. https://doi.org/10.1126/sciadv.aba4174 ParfenovVA KhesuaniYD PetrovSV KaralkinPA KoudanEV NezhurinaEK 2020 Magnetic levitational bioassembly of 3D tissue construct in space Scientific Advances 6 eaba4174 https://doi.org/10.1126/sciadv.aba4174 Search in Google Scholar

Paul AL, Elardo SM, Ferl RJ (2022) Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Communications in Biology 5: 382. doi: 10.1038/s42003-022-03334-8 PaulAL ElardoSM FerlRJ 2022 Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration Communications in Biology 5 382 10.1038/s42003-022-03334-8 Open DOISearch in Google Scholar

Paul AL and Ferl RJ (2006) The biology of low atmosphere pressure-implications for exploration mission design and advanced life support. Gravitational and Space Biology 19: 3–18. PaulAL FerlRJ 2006 The biology of low atmosphere pressure-implications for exploration mission design and advanced life support Gravitational and Space Biology 19 3 18 Search in Google Scholar

Paul AL, Schuerger AC, Popp MP, Richards JT, Manak MS, Ferl RJ (2004) Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure. Plant Physiology 134: 215–223. https://doi.org/10.1104/pp.103.032607 PaulAL SchuergerAC PoppMP RichardsJT ManakMS FerlRJ 2004 Hypobaric biology: Arabidopsis gene expression at low atmospheric pressure Plant Physiology 134 215 223 https://doi.org/10.1104/pp.103.032607 Search in Google Scholar

Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW (2021) Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Science Report 11: 11452. https://doi.org/10.1038/s41598-021-90439-5 PaulAM OverbeyEG da SilveiraWA SzewczykN NishiyamaNC PecautMJ AnandS GalazkaJM MaoXW 2021 Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity Science Report 11 11452 https://doi.org/10.1038/s41598-021-90439-5 Search in Google Scholar

Pecaut MJ, Mao XW, Bellinger DL, Jonscher KR, Stodieck LS, Ferguson VL, Bateman TA, Mohney RP, Gridley DS (2017) Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism? PLoS One 12: e0174174. https://doi.org/10.1371/journal.pone.0174174 PecautMJ MaoXW BellingerDL JonscherKR StodieckLS FergusonVL BatemanTA MohneyRP GridleyDS 2017 Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism? PLoS One 12 e0174174 https://doi.org/10.1371/journal.pone.0174174 Search in Google Scholar

Ramzan F, Vickers MH, Mithen RF (2021) Epigenetics, microRNA and metabolic syndrome: a comprehensive review. International Journal of Molecular Science 22: 5047. https://doi.org/10.3390/ijms22095047 RamzanF VickersMH MithenRF 2021 Epigenetics, microRNA and metabolic syndrome: a comprehensive review International Journal of Molecular Science 22 5047 https://doi.org/10.3390/ijms22095047 Search in Google Scholar

Ranieri D, Cucina A, Bizzarri M, Alimandi M, Torrisi MR (2015) Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio 5: 717–723. https://doi.org/10.1016/j.fob.2015.08.012 RanieriD CucinaA BizzarriM AlimandiM TorrisiMR 2015 Microgravity influences circadian clock oscillation in human keratinocytes FEBS Open Bio 5 717 723 https://doi.org/10.1016/j.fob.2015.08.012 Search in Google Scholar

Ricco AJ, Maria SRS, Hanel RP, Bhattacharya S (2020) BioSentinel: a 6U nanosatellite for deep-space biological science. IEEE Aerospace and Electronic Systems Magazine 35: 6–18. https://doi.org/10.1109/MAES.2019.2953760 RiccoAJ MariaSRS HanelRP BhattacharyaS 2020 BioSentinel: a 6U nanosatellite for deep-space biological science IEEE Aerospace and Electronic Systems Magazine 35 6 18 https://doi.org/10.1109/MAES.2019.2953760 Search in Google Scholar

Ricco AJ, Parra M, Niesel D, Piccini M, Ly D, McGinnis M, Kudlicki A, Hines J, Timucin L, Beasley C, Ricks R, McIntyre M, Friedericks C, Henschke M, Leung R, Diaz-Aguado M, Kitts C, Mas I, Rasay M, Agasid E, Luzzi E, Ronzano K, Squires D, Yost B (2011) PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite. SPIE Microfluidics, BioMEMS, and Medical Microsystems IX Proceedings Vol. 7929: 79290T. https://doi.org/10.1117/12.881082 RiccoAJ ParraM NieselD PicciniM LyD McGinnisM KudlickiA HinesJ TimucinL BeasleyC RicksR McIntyreM FriedericksC HenschkeM LeungR Diaz-AguadoM KittsC MasI RasayM AgasidE LuzziE RonzanoK SquiresD YostB 2011 PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite SPIE Microfluidics, BioMEMS, and Medical Microsystems IX Proceedings 7929 79290T https://doi.org/10.1117/12.881082 Search in Google Scholar

Romsdahl J, Blachowicz A, Chiang AJ, Chiang Y-M, Masonjones S, Yaegashi J, Countryman S, Karouia F, Kalkum M, Stajich JE, Venkateswaran K, Wang CCC (2019) International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Applied Microbiology and Biotechnology 103:1363–1377. doi: 10.1007/s00253-018-9525-0 RomsdahlJ BlachowiczA ChiangAJ ChiangY-M MasonjonesS YaegashiJ CountrymanS KarouiaF KalkumM StajichJE VenkateswaranK WangCCC 2019 International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans Applied Microbiology and Biotechnology 103 1363 1377 10.1007/s00253-018-9525-0 Open DOISearch in Google Scholar

Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen Y-U, Sodipe A, Jejelowo O (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Applied Microbiology and Biotechnology 85: 885–891. https://doi.org/10.1007/s00253-009-2237-8 RosenzweigJA AbogundeO ThomasK LawalA NguyenY-U SodipeA JejelowoO 2010 Spaceflight and modeled microgravity effects on microbial growth and virulence Applied Microbiology and Biotechnology 85 885 891 https://doi.org/10.1007/s00253-009-2237-8 Search in Google Scholar

Rugbjerg P, Sarup-Lytzen K, Nagy M, Sommer MOA (2018) Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proceedings of the National Academy of Science USA 115: 2347–2352. https://doi.org/10.1073/pnas.1718622115 RugbjergP Sarup-LytzenK NagyM SommerMOA 2018 Synthetic addiction extends the productive life time of engineered Escherichia coli populations Proceedings of the National Academy of Science USA 115 2347 2352 https://doi.org/10.1073/pnas.1718622115 Search in Google Scholar

Rubin-Blum M, Dubilier N, Kleiner M (2019) Genetic evidence for two carbon fixation pathways (the calvin-benson-bassham cycle and the reverse tricarboxylic acid cycle) in symbiotic and free-living bacteria. mSphere 4: e00394–18. https://doi.org/10.1128/mSphere.00394-18 Rubin-BlumM DubilierN KleinerM 2019 Genetic evidence for two carbon fixation pathways (the calvin-benson-bassham cycle and the reverse tricarboxylic acid cycle) in symbiotic and free-living bacteria mSphere 4 e00394 18 https://doi.org/10.1128/mSphere.00394-18 Search in Google Scholar

Sage E, Harrison L (2011) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutation Research 711: 123–133. https://doi.org/10.1016/j.mrfmmm.2010.12.010 SageE HarrisonL 2011 Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival Mutation Research 711 123 133 https://doi.org/10.1016/j.mrfmmm.2010.12.010 Search in Google Scholar

Sanders GB and Duke M (2005) In-Situ Resource Utilization (ISRU) capability roadmap progress review. NASA Technical Report Server NTRS 20050205045. Available: https://ntrs.nasa.gov/citations/20050205045 SandersGB DukeM 2005 In-Situ Resource Utilization (ISRU) capability roadmap progress review NASA Technical Report Server NTRS 20050205045. Available: https://ntrs.nasa.gov/citations/20050205045 Search in Google Scholar

Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S (2020) BioSentinel: long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology 20: 1–14. https://doi.org/10.1089/ast.2019.2073 Santa MariaSR MarinaDB Massaro TiezeS LiddellLC BhattacharyaS 2020 BioSentinel: long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission Astrobiology 20 1 14 https://doi.org/10.1089/ast.2019.2073 Search in Google Scholar

Schuerger AC, Amaradasa BS, Dufault NS, Hummerick ME, Richards JT, Khodadad CL, Smith TM, Massa GD (2021) Fusarium oxysporum as an opportunistic fungal pathogen on Zinnia hybrida plants grown on board the International Space Station. Astrobiology 21: 1029–1048. https://doi.org/10.1089/ast.2020.2399 SchuergerAC AmaradasaBS DufaultNS HummerickME RichardsJT KhodadadCL SmithTM MassaGD 2021 Fusarium oxysporum as an opportunistic fungal pathogen on Zinnia hybrida plants grown on board the International Space Station Astrobiology 21 1029 1048 https://doi.org/10.1089/ast.2020.2399 Search in Google Scholar

Sheppard J, Land ES, Toennisson TA, Doherty CJ, Perera IY (2021) Uncovering transcriptional responses to fractional gravity in Arabidopsis roots. Life 11: 1010. https://doi.org/10.3390/life11101010 SheppardJ LandES ToennissonTA DohertyCJ PereraIY 2021 Uncovering transcriptional responses to fractional gravity in Arabidopsis roots Life 11 1010 https://doi.org/10.3390/life11101010 Search in Google Scholar

Shi J, Lu W, Sun Y (2014) Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa). Life Science Space Research 1: 74–79. https://doi.org/10.1016/j.lssr.2014.02.007 ShiJ LuW SunY 2014 Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa) Life Science Space Research 1 74 79 https://doi.org/10.1016/j.lssr.2014.02.007 Search in Google Scholar

Shiwei N, Dritsas S, Fernandez JG (2020) Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLoS One 15: e0238606. doi: 10.1371/journal.pone.0238606 ShiweiN DritsasS FernandezJG 2020 Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing PLoS One 15 e0238606 10.1371/journal.pone.0238606 Open DOISearch in Google Scholar

da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A (2020) Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183: 1185–1201 e1120. https://doi.org/10.1016/j.cell.2020.11.002 da SilveiraWA FazeliniaH RosenthalSB LaiakisEC KimMS MeydanC KidaneY RathiKS SmithSM StearB YingY ZhangY FooxJ ZanelloS CrucianB WangD NugentA CostaHA ZwartSR SchrepferS ElworthRAL SapovalN TreangenT MacKayM GokhaleNS HornerSM SinghLN WallaceDC WilleyJS SchislerJC MellerR McDonaldJT FischKM HardimanG TaylorD MasonCE CostesSV BeheshtiA 2020 Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact Cell 183 1185 1201 e1120. https://doi.org/10.1016/j.cell.2020.11.002 Search in Google Scholar

Singh NK, Wood JM, Karouia F, Venkateswaran K (2018) Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 6: 204. https://doi.org/10.1186/s40168-018-0585-2 SinghNK WoodJM KarouiaF VenkateswaranK 2018 Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Microbiome 6 204 https://doi.org/10.1186/s40168-018-0585-2 Search in Google Scholar

Sleator RD, Smith N (2019) Terraforming: synthetic biology’s final frontier. Archives of Microbiology 201: 855–862. https://doi.org/10.1007/s00203-019-01651-x SleatorRD SmithN 2019 Terraforming: synthetic biology’s final frontier Archives of Microbiology 201 855 862 https://doi.org/10.1007/s00203-019-01651-x Search in Google Scholar

Snyder JE, Walsh D, Carr PA, Rothschild LJ (2019) A makerspace for life support systems in space. Trends in Biotechnology 37: 1164–1174. https://doi.org/10.1016/j.tibtech.2019.05.003 SnyderJE WalshD CarrPA RothschildLJ 2019 A makerspace for life support systems in space Trends in Biotechnology 37 1164 1174 https://doi.org/10.1016/j.tibtech.2019.05.003 Search in Google Scholar

Sobel A, Duncan R (2020) Aerospace environmental health: considerations and countermeasures to sustain crew health through vastly reduced transit time to/from Mars. Frontiers in Public Health 8: 327. doi: 10.3389/fpubh.2020.00327 SobelA DuncanR 2020 Aerospace environmental health: considerations and countermeasures to sustain crew health through vastly reduced transit time to/from Mars Frontiers in Public Health 8 327 10.3389/fpubh.2020.00327 Open DOISearch in Google Scholar

Soni A, O’Sullivan L, Quick LN, Ott CM, Nickerson CA, Wilson JW (2014) Conservation of the low-shear modeled microgravity response in enterobacteriaceae and analysis of the trp genes in this response. Open Microbiology Journal 8: 51–58. https://doi.org/10.2174/1874285801408010051 SoniA O’SullivanL QuickLN OttCM NickersonCA WilsonJW 2014 Conservation of the low-shear modeled microgravity response in enterobacteriaceae and analysis of the trp genes in this response Open Microbiology Journal 8 51 58 https://doi.org/10.2174/1874285801408010051 Search in Google Scholar

Space Biology Science Plan. Space Biological Sciences Plan 2016–2025. NASA (2016). Available: https://www.nasa.gov/sites/default/files/atoms/files/16-03-23_sb_plan.pdf Space Biology Science Plan Space Biological Sciences Plan 2016–2025 NASA 2016 Available: https://www.nasa.gov/sites/default/files/atoms/files/16-03-23_sb_plan.pdf Search in Google Scholar

Speijer D, Hammond M, Lukeš J (2020) Comparing early eukaryotic integration of mitochondria and chloroplasts in the light of internal ROS challenges: timing is of the essence. mBio 11: e00955–20. doi: 10.1128/mBio.00955-20 SpeijerD HammondM LukešJ 2020 Comparing early eukaryotic integration of mitochondria and chloroplasts in the light of internal ROS challenges: timing is of the essence mBio 11 e00955 20 10.1128/mBio.00955-20 Open DOISearch in Google Scholar

Sugimoto M, Oono Y, Kawahara Y, Gusev O, Maekawa M, Matsumoto T, Levinskikh M, Sychev V, Novikova N, Grigoriev A (2016) Gene expression of rice seeds surviving 13- and 20-month exposure to space environment. Life Science Space Research 11: 10–17. https://doi.org/10.1016/j.lssr.2016.10.001 SugimotoM OonoY KawaharaY GusevO MaekawaM MatsumotoT LevinskikhM SychevV NovikovaN GrigorievA 2016 Gene expression of rice seeds surviving 13- and 20-month exposure to space environment Life Science Space Research 11 10 17 https://doi.org/10.1016/j.lssr.2016.10.001 Search in Google Scholar

Suman S, Rodriguez OC, Winters TA, Fornace AJ Jr, Albanese C, Datta K (2013) Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging 5: 607–622. https://doi.org/10.18632/aging.100587 SumanS RodriguezOC WintersTA FornaceAJJr AlbaneseC DattaK 2013 Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production Aging 5 607 622 https://doi.org/10.18632/aging.100587 Search in Google Scholar

Surendran A, Lakshmanan M, Chee JY, Sulaiman AM, Thuoc DV, Sudesh K. (2020). Can polyhydroxyalkanoates be produced efficiently from waste plant and 68 animal oils? Frontiers in Bioengineering and Biotechnology 8: 169. https://doi.org/10.3389/fbioe.2020.00169 SurendranA LakshmananM CheeJY SulaimanAM ThuocDV SudeshK 2020 Can polyhydroxyalkanoates be produced efficiently from waste plant and 68 animal oils? Frontiers in Bioengineering and Biotechnology 8 169 https://doi.org/10.3389/fbioe.2020.00169 Search in Google Scholar

Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytology 203: 32–43. https://doi.org/10.1111/nph.12797 SuzukiN RiveroRM ShulaevV BlumwaldE MittlerR 2014 Abiotic and biotic stress combinations New Phytology 203 32 43 https://doi.org/10.1111/nph.12797 Search in Google Scholar

Suzuki T, Uruno A, Yumoto A, Taguchi K, Suzuki M, Harada N, Ryoke R, Naganuma E, Osanai N, Goto A, Suda H, Browne R, Otsuki A, Katsuoka F, Zorzi M, Yamazaki T, Saigusa D, Koshiba S, Nakamura T, Fukumoto S, Ikehata H, Nishikawa K, Suzuki N, Hirano I, Shimizu R, Oishi T, Motohashi H, Tsubouchi H, Okada R, Kudo, T, Shimomura M, Kensler TW, Mizuno H, Shirakawa M, Takahashi S, Shiba D, Yamamoto M (2020) Nrf2 contributes to the weight gain of mice during space travel. Communications in Biology 3: 496. https://doi.org/10.1038/s42003-020-01227-2 SuzukiT UrunoA YumotoA TaguchiK SuzukiM HaradaN RyokeR NaganumaE OsanaiN GotoA SudaH BrowneR OtsukiA KatsuokaF ZorziM YamazakiT SaigusaD KoshibaS NakamuraT FukumotoS IkehataH NishikawaK SuzukiN HiranoI ShimizuR OishiT MotohashiH TsubouchiH OkadaR KudoT ShimomuraM KenslerTW MizunoH ShirakawaM TakahashiS ShibaD YamamotoM 2020 Nrf2 contributes to the weight gain of mice during space travel Communications in Biology 3 496 https://doi.org/10.1038/s42003-020-01227-2 Search in Google Scholar

Tepfer D, Leach S (2017) Survival and DNA damage in plant seeds exposed for 558 and 682 days outside the international space station. Astrobiology 17: 205–215. https://doi.org/10.1089/ast.2015.1457 TepferD LeachS 2017 Survival and DNA damage in plant seeds exposed for 558 and 682 days outside the international space station Astrobiology 17 205 215 https://doi.org/10.1089/ast.2015.1457 Search in Google Scholar

Tseng BP, Giedzinski E, Izadi A, Suarez T, Lan ML, Tran KK, Acharya MM, Nelson GA, Raber J, Parihar VK, Limoli CL (2014) Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxidants and Redox Signaling 20: 1410–1422. https://doi.org/10.1089/ars.2012.5134 TsengBP GiedzinskiE IzadiA SuarezT LanML TranKK AcharyaMM NelsonGA RaberJ PariharVK LimoliCL 2014 Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation Antioxidants and Redox Signaling 20 1410 1422 https://doi.org/10.1089/ars.2012.5134 Search in Google Scholar

Turker MS, Grygoryev D, Lasarev M, Ohlrich A, Rwatambuga FA, Johnson S, Dan C, Eckelmann B, Hryciw G, Mao JH, Snijders AM, Gauny S, Kronenberg A (2017) Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change. PLoS One 12: e0180412. https://doi.org/10.1371/journal.pone.0180412 TurkerMS GrygoryevD LasarevM OhlrichA RwatambugaFA JohnsonS DanC EckelmannB HryciwG MaoJH SnijdersAM GaunyS KronenbergA 2017 Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change PLoS One 12 e0180412 https://doi.org/10.1371/journal.pone.0180412 Search in Google Scholar

Turroni S, Magnani M, KC P, Lesnik P, Vidal H, Heer M (2020) Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions. Frontiers in Physiology 11: 553929. Available: https://www.frontiersin.org/articles/10.3389/fphys.2020.553929 TurroniS MagnaniM PKC LesnikP VidalH HeerM 2020 Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions Frontiers in Physiology 11 553929. Available: https://www.frontiersin.org/articles/10.3389/fphys.2020.553929 Search in Google Scholar

Uda Y, Spatz JM, Hussein A, Garcia JH, Lai F, Dedic C, Fulzele K, Dougherty S, Eberle M, Adamson C, Misener L, Gerstenfeld L, Divieti Pajevic P (2021) Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight. FASEB Journal 35: e21578. https://doi.org/10.1096/fj.202100059R UdaY SpatzJM HusseinA GarciaJH LaiF DedicC FulzeleK DoughertyS EberleM AdamsonC MisenerL GerstenfeldL Divieti PajevicP 2021 Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight FASEB Journal 35 e21578 https://doi.org/10.1096/fj.202100059R Search in Google Scholar

U.S.NRC § 20.1004 Units Of Radiation Dose. | NRC.gov, visited 11/4/2023. U.S.NRC § 20.1004 Units Of Radiation Dose. | NRC.gov, visited 11/4/2023 Search in Google Scholar

Vasavada AR, Paige DA, Wood SE (1999). Near-surface temperatures on mercury and the moon and the stability of polar ice deposits. Icarus 141: 179–193. https://doi.org/https://doi.org/10.1006/icar.1999.6175 VasavadaAR PaigeDA WoodSE 1999 Near-surface temperatures on mercury and the moon and the stability of polar ice deposits Icarus 141 179 193 https://doi.org/https://doi.org/10.1006/icar.1999.6175 Search in Google Scholar

Versari S, Longinotti G, Barenghi L, Maier JA, Bradamante S (2013) The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB Journal 27: 4466–4475. https://doi.org/10.1096/fj.13-229195 VersariS LonginottiG BarenghiL MaierJA BradamanteS 2013 The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment FASEB Journal 27 4466 4475 https://doi.org/10.1096/fj.13-229195 Search in Google Scholar

Villacampa A, Ciska M, Manzano A, Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ (2021) From spaceflight to Mars g-levels: adaptive response of A. thaliana seedlings in a reduced gravity environment is enhanced by red-light photostimulation. International Journal of Molecular Science 22: 899 https://doi.org/10.3390/ijms22020899 VillacampaA CiskaM ManzanoA VandenbrinkJP KissJZ HerranzR MedinaFJ 2021 From spaceflight to Mars g-levels: adaptive response of A. thaliana seedlings in a reduced gravity environment is enhanced by red-light photostimulation International Journal of Molecular Science 22 899 https://doi.org/10.3390/ijms22020899 Search in Google Scholar

Vogel J, and Luisi BF (2011) Hfq and its constellation of RNA. Nature Reviews Microbiology 9: 578–589. https://doi.org/10.1038/nrmicro2615 VogelJ LuisiBF 2011 Hfq and its constellation of RNA Nature Reviews Microbiology 9 578 589 https://doi.org/10.1038/nrmicro2615 Search in Google Scholar

Volkmann D, Baluska F (2006) Gravity: one of the driving forces for evolution. Protoplasma 229: 143–148. https://doi.org/10.1007/s00709-006-0200-4 VolkmannD BaluskaF 2006 Gravity: one of the driving forces for evolution Protoplasma 229 143 148 https://doi.org/10.1007/s00709-006-0200-4 Search in Google Scholar

Voorhies AA, Ott CM, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E, Lorenzi HA (2019). Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Science Report 9: 9911. https://doi.org/10.1038/s41598-019-46303-8 VoorhiesAA OttCM MehtaS PiersonDL CrucianBE FeivesonA OubreCM TorralbaM MonceraK ZhangY ZurekE LorenziHA 2019 Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome Science Report 9 9911 https://doi.org/10.1038/s41598-019-46303-8 Search in Google Scholar

Wamelink GWW, Frissel JY, Krijnen WH, Verwoert MR, Goedhart PW (2014). Can plants grow on Mars and the Moon: a growth experiment on Mars and Moon soil simulants. PLoS One 9: e103138. https://doi.org/10.1371/journal.pone.0103138 WamelinkGWW FrisselJY KrijnenWH VerwoertMR GoedhartPW 2014 Can plants grow on Mars and the Moon: a growth experiment on Mars and Moon soil simulants PLoS One 9 e103138 https://doi.org/10.1371/journal.pone.0103138 Search in Google Scholar

Wang J, Zhang R, Zhang Y, Yang Y, Lin Y, Yan Y (2019) Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production. Metabolism Engineering 55: 191–200. https://doi.org/10.1016/j.ymben.2019.07.011 WangJ ZhangR ZhangY YangY LinY YanY 2019 Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production Metabolism Engineering 55 191 200 https://doi.org/10.1016/j.ymben.2019.07.011 Search in Google Scholar

Wheeler RM, Fitzpatrick AH, Tibbitts TW (2019) Potatoes as a crop for space life support: effect of CO2, irradiance, and photoperiod on leaf photosynthesis and stomatal conductance. Frontiers in Plant Science 10: 1632. https://doi.org/10.3389/fpls.2019.01632 WheelerRM FitzpatrickAH TibbittsTW 2019 Potatoes as a crop for space life support: effect of CO2, irradiance, and photoperiod on leaf photosynthesis and stomatal conductance Frontiers in Plant Science 10 1632 https://doi.org/10.3389/fpls.2019.01632 Search in Google Scholar

Whipps WL (1988) Mycoparatism and plant disease control. In: Fungi in Biological Control Systems, Ed. Burge MN, pp. 161–187, Manchester University Press. WhippsWL 1988 Mycoparatism and plant disease control In: Fungi in Biological Control Systems Ed. BurgeMN 161 187 Manchester University Press Search in Google Scholar

Wielgoss S, Barrick JE, Tenaillon O, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE, Schneider D (2011) Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3 Genes Genomes Genetics 1: 183–186. https://doi.org/10.1534/g3.111.000406 WielgossS BarrickJE TenaillonO CruveillerS Chane-Woon-MingB MedigueC LenskiRE SchneiderD 2011 Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli G3 Genes Genomes Genetics 1 183 186 https://doi.org/10.1534/g3.111.000406 Search in Google Scholar

Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Science USA 104: 16299–16304. https://doi.org/10.1073/pnas.0707155104 WilsonJW OttCM Höner zu BentrupK RamamurthyR QuickL PorwollikS ChengP McClellandM TsaprailisG RadabaughT HuntA FernandezD RichterE ShahM KilcoyneM JoshiL Nelman-GonzalezM HingS ParraM DumarsP NorwoodK BoberR DevichJ RugglesA GoulartC RupertM StodieckL StaffordP CatellaL SchurrMJ BuchananK MoriciL McCrackenJ AllenP Baker-ColemanC HammondT VogelJ NelsonR PiersonDL Stefanyshyn-PiperHM NickersonCA 2007 Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq Proceedings of the National Academy of Science USA 104 16299 16304 https://doi.org/10.1073/pnas.0707155104 Search in Google Scholar

Yang Y, Lin Y, Wang J, Wu Y, Zhang R, Cheng M, Shen X, Wang J, Chen Z, Li C, Yuan Q, Yan Y (2018) Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis. Nature Communications 9: 3043. https://doi.org/10.1038/s41467-018-05466-0 YangY LinY WangJ WuY ZhangR ChengM ShenX WangJ ChenZ LiC YuanQ YanY 2018 Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis Nature Communications 9 3043 https://doi.org/10.1038/s41467-018-05466-0 Search in Google Scholar

Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiology of Plants 162: 2–12. https://doi.org/10.1111/ppl.12540 ZandalinasSI MittlerR BalfagonD ArbonaV Gomez-CadenasA 2018 Plant adaptations to the combination of drought and high temperatures Physiology of Plants 162 2 12 https://doi.org/10.1111/ppl.12540 Search in Google Scholar

Zhang Y, Moreno-Villanueva M, Krieger S, Ramesh GT, Neelam S, Wu H (2017) Transcriptomics, NF-kappaB pathway, and their potential spaceflight-related health consequences. International Journal of Molecular Science 18: 1166. https://doi.org/10.3390/ijms18061166 ZhangY Moreno-VillanuevaM KriegerS RameshGT NeelamS WuH 2017 Transcriptomics, NF-kappaB pathway, and their potential spaceflight-related health consequences International Journal of Molecular Science 18 1166 https://doi.org/10.3390/ijms18061166 Search in Google Scholar

Zhang Y, Richards JT, Feiveson AH, Richards SE, Neelam S, Dreschel TW et al. (2022) Response of Arabidopsis thaliana and mizuna mustard seeds to simulated space radiation exposure. Life 12: 144. https://doi.org/10.3390/life12020144 ZhangY RichardsJT FeivesonAH RichardsSE NeelamS DreschelTW 2022 Response of Arabidopsis thaliana and mizuna mustard seeds to simulated space radiation exposure Life 12 144 https://doi.org/10.3390/life12020144 Search in Google Scholar

Zhou M, Callaham JB, Reyes M, Stasiak M, Riva A, Zupanska AK, Dixon MA, Paul AL, Ferl RJ (2017) Dissecting low atmospheric pressure stress: transcriptome responses to the components of hypobaria in Arabidopsis. Frontiers in Plant Science 8: 528. https://doi.org/10.3389/fpls.2017.00528 ZhouM CallahamJB ReyesM StasiakM RivaA ZupanskaAK DixonMA PaulAL FerlRJ 2017 Dissecting low atmospheric pressure stress: transcriptome responses to the components of hypobaria in Arabidopsis Frontiers in Plant Science 8 528 https://doi.org/10.3389/fpls.2017.00528 Search in Google Scholar

eISSN:
2332-7774
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Materials Sciences, Physics