Open Access

Mapping by VESGEN of Leaf Venation Patterning in Arabidopsis thaliana with Bioinformatic Dimensions of Gene Expression


Cite

Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal Physiology, New York: Oxford University PressBassingthwaighteJBLiebovitchLSWestBJ1994Fractal PhysiologyNew YorkOxford University Press10.1007/978-1-4614-7572-9Search in Google Scholar

Bauer H, Thoni W (1988) Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helix. Physiologia Plantarum73: 31-37BauerHThoniW1988Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helixPhysiologia Plantarum73313710.1111/j.1399-3054.1988.tb09189.xSearch in Google Scholar

Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences276: 1771-1776BoyceCKBrodribbTJFeildTSZwienieckiMA2009Angiosperm leaf vein evolution was physiologically and environmentally transformativeProceedings of the Royal Society B: Biological Sciences2761771177610.1098/rspb.2008.1919267449819324775Search in Google Scholar

Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters13: 175-183BrodribbTJFeildTS2010Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversificationEcology Letters1317518310.1111/j.1461-0248.2009.01410.x19968696Search in Google Scholar

Candela H, Martinez-Laborda A, Micol JL (1999) Venation pattern formation in Arabidopsis thaliana vegetative leaves. Developmental Biology205: 205-216CandelaHMartinez-LabordaAMicolJL1999Venation pattern formation in Arabidopsis thaliana vegetative leavesDevelopmental Biology20520521610.1006/dbio.1998.91119882508Search in Google Scholar

Chen X, Yang G, Song JH, Xu H, Li D, Goldsmith J, Zeng H, Parsons-Wingerter PA, Reinecker HC, Kelly CP (2013) Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS One8: e64227ChenXYangGSongJHXuHLiDGoldsmithJZengHParsons-WingerterPAReineckerHCKellyCP2013Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammationPLoS One8e6422710.1371/journal.pone.0064227365282723675530Search in Google Scholar

Chua YL, Channeliere S, Mott E, Gray JC (2005) The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes & Development19: 2245-2254ChuaYLChanneliereSMottEGrayJC2005The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1Genes & Development192245225410.1101/gad.352005122189416166385Search in Google Scholar

Clarke JH, Tack D, Findlay K, Van Montagu M, Van Lijsebettens M (1999) The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis. The Plant Journal20: 493-501ClarkeJHTackDFindlayKVan MontaguMVan LijsebettensM1999The SERRATE locus controls the formation of the early juvenile leaves and phase length in ArabidopsisThe Plant Journal2049350110.1046/j.1365-313x.1999.00623.x10607301Search in Google Scholar

Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiology138: 767-777ClayNKNelsonT2005Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transportPlant Physiology13876777710.1104/pp.104.055756115039515894745Search in Google Scholar

Crepet WL, Niklas KJ (2009) Darwin’s second “abominable mystery”: Why are there so many angiosperm species? American Journal of Botany96: 366-381CrepetWLNiklasKJ2009Darwin’s second “abominable mystery”: Why are there so many angiosperm species?American Journal of Botany9636638110.3732/ajb.080012621628194Search in Google Scholar

de Boer HJ, Eppinga MB, Wassen MJ, Dekker SC (2012) A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications3: article number: 1221de BoerHJEppingaMBWassenMJDekkerSC2012A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolutionNature Communications3article number 122110.1038/ncomms2217Search in Google Scholar

Delker C, Raschke A, Quint M (2008) Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta227: 929-941DelkerCRaschkeAQuintM2008Auxin dynamics: the dazzling complexity of a small molecule’s messagePlanta22792994110.1007/s00425-008-0710-8Search in Google Scholar

Dhondt S, Van Haerenborgh D, Van Cauwenbergh C, Merks RM, Philips W, Beemster GT, Inze D (2012) Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis. The Plant Journal : for Cell and Molecular Biology69: 553-563DhondtSVan HaerenborghDVan CauwenberghCMerksRMPhilipsWBeemsterGTInzeD2012Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysisThe Plant Journal : for Cell and Molecular Biology6955356310.1111/j.1365-313X.2011.04803.xSearch in Google Scholar

Ellis B, Daly DC, Hickey LJ, Kirk RJ, Mitchell JD, Wilf P, Wing SL (2009) Manual of Leaf Architecture, Ithaca, NY: Cornell University PressEllisBDalyDCHickeyLJKirkRJMitchellJDWilfPWingSL2009Manual of Leaf ArchitectureIthaca, NYCornell University Press10.1079/9781845935849.0000Search in Google Scholar

Esau K (1965) Plant Anatomy, Second edn, New York: John Wiley and Sons, IncEsauK1965Plant AnatomySecond ednNew YorkJohn Wiley and Sons, IncSearch in Google Scholar

Ferl R, Wheeler R, Levine HG, Paul A-L (2002) Plants in space. Current Opinion in Plant Biology5: 258-263FerlRWheelerRLevineHGPaulA-L2002Plants in spaceCurrent Opinion in Plant Biology525826310.1016/S1369-5266(02)00254-6Search in Google Scholar

Ferl RJ, Zupanska A, Spinale A, Reed D, Manning-Roach S, Guerra G, Cox DR, Paul A-L (2011) The performance of KSC Fixation Tubes with RNALater for orbital experiments: A case study in ISS operations for molecular biology. Advances in Space Research48: 199-206FerlRJZupanskaASpinaleAReedDManning-RoachSGuerraGCoxDRPaulA-L2011The performance of KSC Fixation Tubes with RNALater for orbital experiments: A case study in ISS operations for molecular biologyAdvances in Space Research4819920610.1016/j.asr.2011.03.002Search in Google Scholar

Guyton AC, Hall JE (2006) Textbook of Medical Physiology, 11th edn, Philadelphia: ElsevierGuytonACHallJE2006Textbook of Medical Physiology11th ednPhiladelphiaElsevierSearch in Google Scholar

Saunders Hickey LJ (1973) Classification of the architecture of dicotyledeonous leaves. American Journal of Botany60: 17-33Saunders HickeyLJ1973Classification of the architecture of dicotyledeonous leavesAmerican Journal of Botany60173310.1002/j.1537-2197.1973.tb10192.xSearch in Google Scholar

Hickey LJ (1979) A revised classification of the architecture of dicotyledonous leaves. In Anatomy of the Dicotyledons, C.R. Metcalfe, L. Chalk (eds), Second edn, pp 25-39. Oxford: Clarendon PressHickeyLJ1979A revised classification of the architecture of dicotyledonous leavesInAnatomy of the DicotyledonsMetcalfeC.R.ChalkL.Second edn2539OxfordClarendon PressSearch in Google Scholar

Horowitz A, Simons M (2009) Branching morphogenesis. Circulation Research104: e21HorowitzASimonsM2009Branching morphogenesisCirculation Research104e2110.1161/CIRCRESAHA.108.191494284445319179661Search in Google Scholar

Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development138: 4117-4129HuijserPSchmidM2011The control of developmental phase transitions in plantsDevelopment1384117412910.1242/dev.06351121896627Search in Google Scholar

Kang J, Dengler N (2004) Vein pattern development in adult leaves of Arabidopsis thaliana. International Journal of Plant Science165: 231-242KangJDenglerN2004Vein pattern development in adult leaves of Arabidopsis thalianaInternational Journal of Plant Science16523124210.1086/382794Search in Google Scholar

Kang J, Mizukami Y, Wang H, Fowke L, Dengler NG (2007) Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana. Planta226: 1207-1218KangJMizukamiYWangHFowkeLDenglerNG2007Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thalianaPlanta2261207121810.1007/s00425-007-0567-217569988Search in Google Scholar

Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics163: 1109-1122KankelMWRamseyDEStokesTLFlowersSKHaagJRJeddelohJARiddleNCVerbskyMLRichardsEJ2003Arabidopsis MET1 cytosine methyltransferase mutantsGenetics1631109112210.1093/genetics/163.3.1109146248512663548Search in Google Scholar

Lamont RE, Childs S (2006) MAPping out arteries and veins. Science STKE2006: pe39LamontREChildsS2006MAPping out arteries and veinsScience STKE2006pe3910.1126/stke.3552006pe3917018851Search in Google Scholar

Levine HG (2010) The influence of microgravity on plants. In NASA ISS Research and Pre-Application Meeting, League City, TX, August 3-5. Retrieved from http://www.nasa.gov/pdf/478076main_Day1_P03c_Levine_Plants.pdfLevineHG2010The influence of microgravity on plants. In NASA ISS Research and Pre-Application MeetingLeague City, TXAugust3-5Retrieved from http://www.nasa.gov/pdf/478076main_Day1_P03c_Levine_Plants.pdfSearch in Google Scholar

Liu H, Yang Q, Radhakrishnan K, Whitfield DE, Everhart CL, Parsons-Wingerter P, Fisher SA (2009) Role of VEGF and tissue hypoxia in patterning of neural and vascular cells recruited to the embryonic heart. Developmental Dynamics238: 2760-2769LiuHYangQRadhakrishnanKWhitfieldDEEverhartCLParsons-WingerterPFisherSA2009Role of VEGF and tissue hypoxia in patterning of neural and vascular cells recruited to the embryonic heartDevelopmental Dynamics2382760276910.1002/dvdy.22103292568219842184Search in Google Scholar

Lobet G (2013-2014) Plant Image Analysis. University of Liege and others (ed) Retrieved from http://www.plant-image-analysis.org/LobetG2013-2014Plant Image AnalysisUniversity of Liege and others (ed)Retrieved from http://www.plant-image-analysis.org/Search in Google Scholar

Mandelbrot BB (1983) The Fractal Geometry of Nature, San Francisco: W. H. FreemanMandelbrotBB1983The Fractal Geometry of NatureSan FranciscoW. H. Freeman10.1119/1.13295Search in Google Scholar

McKay TL, Gedeon DJ, Vickerman MB, Hylton AG, Ribita D, Olar HH, Kaiser PK, Parsons-Wingerter P (2008) Selective inhibition of angiogenesis in small blood vessels and decrease in vessel diameter throughout the vascular tree by triamcinolone acetonide. Investigative Ophthalmology & Visual Science49: 1184-1190McKayTLGedeonDJVickermanMBHyltonAGRibitaDOlarHHKaiserPKParsons-WingerterP2008Selective inhibition of angiogenesis in small blood vessels and decrease in vessel diameter throughout the vascular tree by triamcinolone acetonideInvestigative Ophthalmology & Visual Science491184119010.1167/iovs.07-132918326748Search in Google Scholar

Monje O, Goins GD, Tripathy BC, Stutte GW (2005) Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis on dwarf wheat. Planta223: 46-56MonjeOGoinsGDTripathyBCStutteGW2005Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis on dwarf wheatPlanta223465610.1007/s00425-005-0066-216160842Search in Google Scholar

Monje O, Hatfield RD, Stutte GW, Paul A-L, Ferl RJ, Simone CG (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta224: 1038-1049MonjeOHatfieldRDStutteGWPaulA-LFerlRJSimoneCG2006Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheatPlanta2241038104910.1007/s00425-006-0290-416708225Search in Google Scholar

Muller B, Grossniklaus U (2010) Model organisms – a historical perspective. Journal of Proteomics73: 2054-2063MullerBGrossniklausU2010Model organisms – a historical perspectiveJournal of Proteomics732054206310.1016/j.jprot.2010.08.00220727995Search in Google Scholar

Musgrave ME (2007) Growing plants in space. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources2: 9MusgraveME2007Growing plants in spaceCAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources2910.1079/PAVSNNR20072065Search in Google Scholar

Nicotra AB, Leigh A, Boyce CK, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology38: 535-552NicotraABLeighABoyceCKNiklasKJRoyerDLTsukayaH2011The evolution and functional significance of leaf shape in the angiospermsFunctional Plant Biology3853555210.1071/FP1105732480907Search in Google Scholar

Page DR, Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nature Review Genetics3: 124-136PageDRGrossniklausU2002The art and design of genetic screens: Arabidopsis thalianaNature Review Genetics312413610.1038/nrg73011836506Search in Google Scholar

Parsons-Wingerter P, Chandrasekharan UM, McKay TL, Radhakrishnan K, DiCorleto PE, Albarran B, Farr AG (2006a) A VEGF165-induced phenotypic switch from increased vessel density to increased vessel diameter and increased endothelial NOS activity. Microvascular Research72: 91-100Parsons-WingerterPChandrasekharanUMMcKayTLRadhakrishnanKDiCorletoPEAlbarranBFarrAG2006aA VEGF165-induced phenotypic switch from increased vessel density to increased vessel diameter and increased endothelial NOS activityMicrovascular Research729110010.1016/j.mvr.2006.05.00816872639Search in Google Scholar

Parsons-Wingerter P, Elliott KE, Clark JI, Farr AG (2000a) Fibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial tree. Arteriosclerosis, Thrombosis, and Vascular Biology20: 1250-1256Parsons-WingerterPElliottKEClarkJIFarrAG2000aFibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial treeArteriosclerosis, Thrombosis, and Vascular Biology201250125610.1161/01.ATV.20.5.1250Search in Google Scholar

Parsons-Wingerter P, Elliott KE, Farr AG, Radhakrishnan K, Clark JI, Sage EH (2000b) Generational analysis reveals that TGF-beta1 inhibits the rate of angiogenesis in vivo by selective decrease in the number of new vessels. Microvascular Research59: 221-232Parsons-WingerterPElliottKEFarrAGRadhakrishnanKClarkJISageEH2000bGenerational analysis reveals that TGF-beta1 inhibits the rate of angiogenesis in vivo by selective decrease in the number of new vesselsMicrovascular Research5922123210.1006/mvre.1999.221310684728Search in Google Scholar

Parsons-Wingerter P, Lwai B, Yang MC, Elliott KE, Milaninia A, Redlitz A, Clark JI, Sage EH (1998) A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvascualr Research55: 201-214Parsons-WingerterPLwaiBYangMCElliottKEMilaniniaARedlitzAClarkJISageEH1998A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersectionMicrovascualr Research5520121410.1006/mvre.1998.20739657920Search in Google Scholar

Parsons-Wingerter P, McKay TL, Leontiev D, Vickerman MB, Condrich TK, Dicorleto PE (2006b) Lymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splitting. The Anatomical Record Part A288: 233-247Parsons-WingerterPMcKayTLLeontievDVickermanMBCondrichTKDicorletoPE2006bLymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splittingThe Anatomical Record Part A28823324710.1002/ar.a.2030916489601Search in Google Scholar

Parsons-Wingerter P, Radhakrishnan K, Vickerman M, Kaiser P (2010) Oscillation of angiogenesis with vascular dropout in diabetic retinopathy by VESsel GENeration analysis (VESGEN). Investigative Ophthalmology & Visual Science51: 498-507Parsons-WingerterPRadhakrishnanKVickermanMKaiserP2010Oscillation of angiogenesis with vascular dropout in diabetic retinopathy by VESsel GENeration analysis (VESGEN)Investigative Ophthalmology & Visual Science5149850710.1167/iovs.09-3968286906019797226Search in Google Scholar

Parsons-Wingerter P, Reinecker H-C (2012) For application to human spaceflight and ISS experiments: VESGEN mapping of microvascular network remodeling during intestinal inflammation. Gravitational and Space Biology26: 2-12Parsons-WingerterPReineckerH-C2012For application to human spaceflight and ISS experiments: VESGEN mapping of microvascular network remodeling during intestinal inflammationGravitational and Space Biology26212Search in Google Scholar

Parsons-Wingerter P, Vickerman MB (2011) Informative mapping by VESGEN analysis of venation branching pattern in plant leaves such as Arabidopsis thaliana. Gravitational and Space Biology25: 69-71Parsons-WingerterPVickermanMB2011Informative mapping by VESGEN analysis of venation branching pattern in plant leaves such as Arabidopsis thalianaGravitational and Space Biology256971Search in Google Scholar

Paul A-L, Daugherty CJ, Bihn EA, Chapman DK, Norwood KL, Ferl RJ (2001) Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiology126: 613-621PaulA-LDaughertyCJBihnEAChapmanDKNorwoodKLFerlRJ2001Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in ArabidopsisPlant Physiology12661362110.1104/pp.126.2.61311115311402191Search in Google Scholar

Paul A-L, Wheeler RM, Levine HG, Ferl RJ (2013a) Fundamental plant biology enabled by the space shuttle. American Journal of Botonay100: 226-234PaulA-LWheelerRMLevineHGFerlRJ2013aFundamental plant biology enabled by the space shuttleAmerican Journal of Botonay10022623410.3732/ajb.120033823281389Search in Google Scholar

Paul A-L, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology12: 40-56PaulA-LZupanskaAKOstrowDTZhangYSunYLiJLShankerSFarmerieWGAmalfitanoCEFerlRJ2012Spaceflight transcriptomes: unique responses to a novel environmentAstrobiology12405610.1089/ast.2011.0696326496222221117Search in Google Scholar

Paul A-L, Zupanska AK, Schultz ER, Ferl RJ (2013b) Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biology13: 112PaulA-LZupanskaAKSchultzERFerlRJ2013bOrgan-specific remodeling of the Arabidopsis transcriptome in response to spaceflightBMC Plant Biology1311210.1186/1471-2229-13-112Search in Google Scholar

Pennisi E (2010) On rarity and richness. Science327: 1318-1319PennisiE2010On rarity and richnessScience3271318131910.1126/science.327.5971.1318Search in Google Scholar

Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science250: 923-930PoethigRS1990Phase change and the regulation of shoot morphogenesis in plantsScience25092393010.1126/science.250.4983.923Search in Google Scholar

Price CA, Symonova O, Y. M, T. H, Weitz JS (2011) Leaf extraction and analysis famework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles. Plant Physiology155: 236-245PriceCASymonovaOY.MT.HWeitzJS2011Leaf extraction and analysis famework graphical user interface: segmenting and analyzing the structure of leaf veins and areolesPlant Physiology15523624510.1104/pp.110.162834Search in Google Scholar

Pulido A, Laufs P (2010) Co-ordination of developmental processes by small RNAs during leaf development. Journal of Experimental Botany61: 1277-1291PulidoALaufsP2010Co-ordination of developmental processes by small RNAs during leaf developmentJournal of Experimental Botany611277129110.1093/jxb/erp397Search in Google Scholar

Rolland-Lagan AG, Amin M, Pakulska M (2009) Quantifying leaf venation patterns: two-dimensional maps. The Plant Journal : for Cell and Molecular Biology57: 195-205Rolland-LaganAGAminMPakulskaM2009Quantifying leaf venation patterns: two-dimensional mapsThe Plant Journal : for Cell and Molecular Biology5719520510.1111/j.1365-313X.2008.03678.xSearch in Google Scholar

Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and function of leaf venation architecture: a review. Annals of Botany87: 553-566Roth-NebelsickAUhlDMosbruggerVKerpH2001Evolution and function of leaf venation architecture: a reviewAnnals of Botany8755356610.1006/anbo.2001.1391Search in Google Scholar

Scarpella E, Helariutta Y (2010) Vascular pattern formation in plants. In Plant Development, M.C.P. Timmerman (ed), 8, pp 221-266. San Diego: Academic PressScarpellaEHelariuttaY2010Vascular pattern formation in plantsInPlant DevelopmentTimmermanM.C.P.8221266San DiegoAcademic Press10.1016/S0070-2153(10)91008-9Search in Google Scholar

Sicker RJ, Meyer WV (2013) Light Microscopy Module (LMM). Space Flight Systems @ GRC, Physical Science Research Program. Retreived from http://spaceflightsystems.grc.nasa.gov/SOPO/ICHO/IRP/FCF/Investigations/LMM/LMM_Brochure/index.php in http://spaceflightsystems.grc.nasa.gov/SOPO/ICHO/IRP/FCF/Investigations/LMM/SickerRJMeyerWV2013Light Microscopy Module (LMM). Space Flight Systems @ GRC, Physical Science Research ProgramRetreived from http://spaceflightsystems.grc.nasa.gov/SOPO/ICHO/IRP/FCF/Investigations/LMM/LMM_Brochure/index.php in http://spaceflightsystems.grc.nasa.gov/SOPO/ICHO/IRP/FCF/Investigations/LMM/Search in Google Scholar

Sturm JG (1796) Deutschlands Flora in Abbildungen. Retrieved from http://www.biolib.de/ and http://commons.wikimedia.org/wiki/File%3AArabis_thaliana_Sturm6.jpgSturmJG1796Deutschlands Flora in AbbildungenRetrieved from http://www.biolib.de/ and http://commons.wikimedia.org/wiki/File%3AArabis_thaliana_Sturm6.jpgSearch in Google Scholar

Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sunderland MA: Sinauer Associates, IncTaizLZeigerE2010Plant Physiology5th edn.Sunderland MASinauer Associates, IncSearch in Google Scholar

Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development124: 645-654TelferABollmanKMPoethigRS1997Phase change and the regulation of trichome distribution in Arabidopsis thalianaDevelopment12464565410.1242/dev.124.3.6459043079Search in Google Scholar

Tripathy BC, Brown CS, Levine HG, Krikorian AD (1996) Growth and photosynthetic responses of wheat plants grown in space. Plant Physiology110: 801-806TripathyBCBrownCSLevineHGKrikorianAD1996Growth and photosynthetic responses of wheat plants grown in spacePlant Physiology11080180610.1104/pp.110.3.8011577798819868Search in Google Scholar

Turner S, Sieburth LE (2003) Vascular patterning. The Arabidopsis Book2: e0073TurnerSSieburthLE2003Vascular patterningThe Arabidopsis Book2e007310.1199/tab.0073324333522303224Search in Google Scholar

Velikova V, Loreto F, Brilli F, Stefanov D, Yordanov I (2008) Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids. Plant Biology (Stuttg)10: 55-64VelikovaVLoretoFBrilliFStefanovDYordanovI2008Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoidsPlant Biology (Stuttg)10556410.1055/s-2007-96496418211547Search in Google Scholar

Vickerman MB, Keith PA, McKay TL, Gedeon DJ, Watanabe M, Montano M, Karunamuni G, Kaiser PK, Sears JE, Ebrahem Q, Ribita D, Hylton AG, Parsons-Wingerter P (2009) VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. The Anatomical Record Part A292: 320-332VickermanMBKeithPAMcKayTLGedeonDJWatanabeMMontanoMKarunamuniGKaiserPKSearsJEEbrahemQRibitaDHyltonAGParsons-WingerterP2009VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networksThe Anatomical Record Part A29232033210.1002/ar.20862288017519248164Search in Google Scholar

Vogel S (2012) The Life of a Leaf, Chicago and London: The University of Chicago PressVogelS2012The Life of a LeafChicago and LondonThe University of Chicago Press10.7208/chicago/9780226859422.001.0001Search in Google Scholar

Willmann MR, Poethig RS (2011) The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development138: 677-685WillmannMRPoethigRS2011The effect of the floral repressor FLC on the timing and progression of vegetative phase change in ArabidopsisDevelopment13867768510.1242/dev.057448302641321228003Search in Google Scholar

WISTEP (2014). Retrieved from http://biology.wisc.edu/K12-ProfessionalDevelopmentforK12Educators-WisTEP.htmWISTEP2014Retrieved from http://biology.wisc.edu/K12-ProfessionalDevelopmentforK12Educators-WisTEP.htmSearch in Google Scholar

Wolverton C, Kiss JZ (2009) An update on plant space biology. Gravitational and Space Biology22: 13-20WolvertonCKissJZ2009An update on plant space biologyGravitational and Space Biology221320Search in Google Scholar

Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell138: 750-759WuGParkMYConwaySRWangJWWeigelDPoethigRS2009The sequential action of miR156 and miR172 regulates developmental timing in ArabidopsisCell13875075910.1016/j.cell.2009.06.031273258719703400Search in Google Scholar

Zamanian-Daryoush M, Lindner D, Tallant TC, Wang Z, Buffa J, Klipfell E, Parker Y, Hatala D, Parsons-Wingerter P, Rayman P, Yusufishaq MS, Fisher EA, Smith JD, Finke J, Didonato JA, Hazen SL (2013) The cardioprotective protein ApoA1 promotes potent anti-tumorigenic effects. Journal of Biological Chemistry288: 21237-21252Zamanian-DaryoushMLindnerDTallantTCWangZBuffaJKlipfellEParkerYHatalaDParsons-WingerterPRaymanPYusufishaqMSFisherEASmithJDFinkeJDidonatoJAHazenSL2013The cardioprotective protein ApoA1 promotes potent anti-tumorigenic effectsJournal of Biological Chemistry288212372125210.1074/jbc.M113.468967377439223720750Search in Google Scholar

eISSN:
2332-7774
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Materials Sciences, Physics