Open Access

Multilocus Sequence Typing as a Useful Tool for the Study of the Genetic Diversity and Population Structure of Cryptosporidium Spp.


Cite

1. Abal-Fabeiro, J. L., Maside, X., Bello, X., Llovo, J., Bartolomé, C., 2013: Multilocus patterns of genetic variation across Cryptosporidium species indicate balanced selection at the gp60 locus. Mol. Ecol., 22, 4723–4732. DOI: 10.1111/mec.12425.10.1111/mec.1242523915002 Search in Google Scholar

2. Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., 2004: The complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science, 304, 441‒445.10.1126/science.109478615044751 Search in Google Scholar

3. Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., et al., 2019: Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Micro­biol., 66, 4–119. DOI: 10.1111/jeu.12691.10.1111/jeu.12691649200630257078 Search in Google Scholar

4. Alves, M., Xiao, L., Antunes, F., 2006: Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitol. Res., 99, 287–292. DOI: 10. 1007/s00436-006-0164-5.10.1007/s00436-006-0164-516552512 Search in Google Scholar

5. Arushothy, R., Amran, F., Samsuddin, N., Ahmad, N., Nathan, S., Borlee, B. R., 2020: Multilocus sequence typing of Burkholderia pseudomallei clinical isolates from Malaysia. PLOS Negl. Trop. Dis., 14, e0008979. DOI: 10.1371/jour nal.pntd.0008979.10.1371/journal.pntd.0008979 Search in Google Scholar

6. Ashigbie, P. G., Shepherd, S., Steiner, K. L., Amadi, B., Aziz, N., Manjunatha, U. H., et al., 2021: Use-case scenarios for an anti-Cryptosporidium therapeutic. PLOS Negl. Trop. Dis., 15, e0009057. DOI: 10.1371/journal.pntd.0009057.10.1371/journal.pntd.0009057795183933705395 Search in Google Scholar

7. Cacciò, S. M., Sannella, A. R., Mariano, V., Valentini, S., Berti, F., Tosini, F., Pozio, E., 2013: A rare Cryptosporidium parvum genotype associated with infection of lambs and zoonotic transmission in Italy. Vet. Parasitol., 16, 128–131. DOI: 10.1016/j.vetpar.2012.08.010.10.1016/j.vetpar.2012.08.010713123922954678 Search in Google Scholar

8. Carreño, M., Velasco, C. A., 2005: Rueda E. Prevalencia de Cryptosporidium spp. en niños menores de 13 años con afecciones oncológicas. Colomb. Med., 36, 6‒9. Search in Google Scholar

9. Cavalier-Smith, T., 2014: Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Europ. J. Protistol., 50, 472‒495. DOI: 10.1016/j.ejop.2014.07.002.10.1016/j.ejop.2014.07.00225238406 Search in Google Scholar

10. Cornelius, D. C., Robinson, D. A., Muzny, C. A., Mena, L. A., Aanensen, D. M., Lushbaugh, W. B., 2012: Genetic characterization of Trichomonas vaginalis isolates using multilocus sequence typing. J. Clin. Microbiol., 50, 3293–3300. DOI: 10.1128/JCM.00643-12.10.1128/JCM.00643-12345746122855512 Search in Google Scholar

11. Crypto DB: Cryptosporidium Informatics Resources. Available at http://cryptodb.org/cryptodb/. Updated August 30, 2022. Accessed November 7, 2022. Search in Google Scholar

12. Delaney, M. A., Treuting, P. M., Rothenburger, J. L., 2014: Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Europ. J. Protistol., 50, 472–495. DOI: 10.1016/j.ejop.2014.07.002.10.1016/j.ejop.2014.07.002 Search in Google Scholar

13. Díaz, P., Quílez, J., Prieto, A., 2015: Cryptosporidium species and subtype analysis in diarrhoeic pre-weaned lambs and goat kids from north-western Spain. Parasitol. Res., 114, 4099–4105. DOI: 10.1007/s00436-015-4639-0.10.1007/s00436-015-4639-026212102 Search in Google Scholar

14. Dong, S., Yang, Y., Wang, Y., Yang, D., Yang, Y., Shi, Y., Li, Ch., et al., 2020: Prevalence of Cryptosporidium infection in the global population: A systematic review and meta-analysis. Acta Parasit., 65, 882‒889. DOI: 10.2478/s11 686-020-00230-1.10.2478/s11686-020-00230-1 Search in Google Scholar

15. Efstratiou, A., Ongerth, J., Karanis, P., 2017: Evolution of monitoring for Giardia and Cryptosporidium in water. Water Research, 123, 96‒112.10.1016/j.watres.2017.06.04228651085 Search in Google Scholar

16. Fall, A., Thompson, R. C. A., Hobbs, R. P., Morgan-Ryan, U., 2003: Morphology is not a reliable tool for delineating species within Cryptosporidium. J. Parasitol., 89, 399‒402. DOI: 10.1645/0022-3395(2003)089[0399:MINART]2.0.CO; 2.10.1645/0022-3395(2003)089[0399:MINART]2.0.CO;2 Search in Google Scholar

17. Fayer, R., 2010: Taxonomy and delimitation of species of Cryptosporidium. Exp. Parasitol., 124, 90‒97.10.1016/j.exppara.2009.03.00519303009 Search in Google Scholar

18. Feng, Y., Yang, W., Ryan, U., Zhang, L., Kvác, M., 2011: Development of a multilocus sequencing tool for typing Cryptosporidium muris and Cryptosporidium andersoni. J. Clin. Microbiol., 49, 34–41. DOI: 10.1128/JCM.01329-10.10.1128/JCM.01329-10302041020980577 Search in Google Scholar

19. Gatei, W., Das, P., Dutta, P., Sen, A., Cama, V., 2007: Multi-locus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Infect. Genet. Evol., 7, 197–205. DOI: 10.1016/j.meegid.2006.08.006.10.1016/j.meegid.2006.08.00617010677 Search in Google Scholar

20. Hijjawi, N., Yang, N. J. R., Atoum, M. F., Ryan, U., 2010: Identification of rare and novel subtypes of Cryptosporidium GP60 in human isolates from Jordan. Exp. Parasitol., 125, 161‒164.10.1016/j.exppara.2010.01.01120109456 Search in Google Scholar

21. Horčičková, M., Čondlová, Š., Holubová, N., Sak, B., Květoňová, D., Hlásková, L., et al., 2019: Diversity of Cryptosporidium in common voles and description of Cryptosporidium alticolis sp. n. and Cryptosporidium microti sp. n. (Apicomplexa: Cryptosporidiidae). Parasitology, 146, 220–233. DOI: 10.1017/S0031182018001142.10.1017/S0031182018001142699418930012231 Search in Google Scholar

22. Chalmers, R., Cacciò, S., 2016: Towards a consensus on genotyping schemes for Cryptosporidium outbreak surveil-lance and investigation. Eurosurveillance, 21, 1–4. DOI: 10. 2807/1560-7917.ES.2016.21.37.30338.10.2807/1560-7917.ES.2016.21.37.30338503285327685759 Search in Google Scholar

23. Chalmers, R., Pérez-Cordón, G., Cacció, S. M., Klotz, C., Robertson, L. J., 2018: Cryptosporidium genotyping in Europe: Current status and processes for a harmonized multilocus genotyping scheme. Exp. Parasitol., 191, 25–30. DOI: 10.1016/j.exppara.2018.06.004.10.1016/j.exppara.2018.06.00429908140 Search in Google Scholar

24. Janouškovec, J., Paskerova, G. G., Miroliubova, T. S., Mikhailov, K. V., Birley, T. Aleoshin, V. V., Simdyanov, T. G., 2019: Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. Elife, 16, e49662. DOI: 10.7554/eLife.49662.10.7554/eLife.49662673359531418692 Search in Google Scholar

25. JCVI: J. Craig Venter Institute. Available at http://gsc.jcvi.org/projects/msc/Cryptosporidium_muris/. Updated March 26, 2022. Accessed November 08, 2022. Search in Google Scholar

26. Koehler, A. V., Wang, T., Haydon, S. R., Gasser, R. B., 2018: Cryptosporidium viatorum from the native Australian swamp rat Rattus lutreolus ‒ an emerging zoonotic pathogen ? Int. J. Parasitol. Parasites Wild, 7, 18–26. DOI: 10.1016/j.ijp paw.2018.01.004.10.1016/j.ijppaw.2018.01.004 Search in Google Scholar

27. Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., 2013: Burden and etiology of diarrheal disease in infants and young children in developing countries (Global Enteric Multicenter Study, GEMS): A prospective case-control study. Lancet, 382, 209–222. DOI: 10.1016/S0140-6736(13)60844-2.10.1016/S0140-6736(13)60844-223680352 Search in Google Scholar

28. Leander, B. S., 2008: Marine gregarines: Evolutionary prelude to the apicomplexan radiation ? Trends Parasitol., 24, 60‒70. DOI: 10.1016/j.pt.2007.11.005.10.1016/j.pt.2007.11.00518226585 Search in Google Scholar

29. Levine, N. D., 1984: Taxonomy and review of the coccidian genus Cryptosporidium (Protozoa, Apicomplexa). J. Protozoology, 31, 94‒98. DOI: 10.1111/j.1550-7408.1984.tb04 296.x.10.1111/j.1550-7408.1984.tb04296.x Search in Google Scholar

30. Liang, N., Wu, Y., Sun, M., Chang, Y., Lin, X., Yu, L., Zhang, L., 2019: Molecular epidemiology of Cryptosporidium spp. in dairy cattle in Guangdong Province, South China. Parasitology, 146, 28‒32. DOI:10.1017/S003118201800 1129.10.1017/S0031182018001129 Search in Google Scholar

31. MacKenzie, W. R., Hoxie, N. J., Proctor, M. E., 1994: The massive outbreak of Cryptosporidium infection transmitted through the public water supply. N. Engl. J. Med., 331, 161–167.10.1056/NEJM1994072133103047818640 Search in Google Scholar

32. Mallon, M., MacLeod, A., Wastling, J., Smith, H., Reilly, B., Tait, A., 2003: Population structures and the role of genetic exchange in the zoonotic pathogen Cryptosporidium parvum. J. Mol. Evol., 56, 407–417.10.1007/s00239-002-2412-312664161 Search in Google Scholar

33. Masuno, K., Fukuda, Y., Kubo, M., Ikarashi, R., Kuraishi, T., Hattori, S., et al., 2014: Infectivity of Cryptosporidium andersoni and Cryptosporidium muris to normal and immunosuppressive cynomolgus monkeys. J. Vet. Med. Sci., 76, 169–172. DOI: 10.1292/jvms.13-0350.10.1292/jvms.13-0350398282924132296 Search in Google Scholar

34. Matur, V., Kolisko, M., Hehenberger, E., Irwin, N. A. T., Leander, B. S., Kristmundsson, A., et al., 2019: Multiple independent origins of apicomplexan-like parasites. Current Biology, 29, 2936–2941. DOI: 10.1016/j.cub.2019.07.019.10.1016/j.cub.2019.07.01931422883 Search in Google Scholar

35. Osman, M., Benamrouz, S., Guyot, K., Baydoun, M., Frealle, E., Chabe, M., et al., 2017: High association of Cryptosporidium spp. infection with colon adenocarcinoma in Lebanese patients. PLOS ONE, 12, 422. DOI: 10.1371/jou rnal.pone.0189422.10.1371/journal.pone.0189422 Search in Google Scholar

36. Pérez-Losada, M., Browne, E. B., Madsen, A., Wirth, T., Viscidi, R. P., Crandall, K. A., 2006: Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol., 6, 97–112. DOI: 10. 1016/j.meegid.2005.02.003.10.1016/j.meegid.2005.02.003198344516503511 Search in Google Scholar

37. Pinto, D. J., Vinayak, S., 2021: Cryptosporidium: Host-parasite interactions and pathogenesis. Curr. Clin. Micro. Rpt., 8, 62‒67. DOI: 10.1007/s40588-021-00159-7.10.1007/s40588-021-00159-7786830733585166 Search in Google Scholar

38. Qi, M., Wang, R., Jing, B., Jian, F., Ning, Ch., Zhang, L., 2016: Prevalence and multilocus genotyping of Cryptosporidium andersoni in dairy cattle and He cattle in Xinjiang, China. Infect. Genet. Evol., 44, 313–317. DOI: 10.1016/j.me egid.2016.07.022.10.1016/j.meegid.2016.07.022 Search in Google Scholar

39. Quílez, J., Hadfield, S. J., Ramo, A., Vergara-Castiblanco, C., Chalmers, R. M., 2014: Validation of fragment analysis by capillary electrophoresis to resolve mixed Cryptosporidium parvum subpopulation infections. Parasitol. Res., 113, 1821–1825. DOI: 10.1007/s00436-014-3828-6.10.1007/s00436-014-3828-624609235 Search in Google Scholar

40. Quílez, J., Torres, E., Chalmers, R. M., Hadfield, S. J., Cacho, E., Sánchez-Acedo, C., 2008: Genotypes and sub-types in lambs and goat kids in Spain. Appl. Environ. Micro­biol., 74, 6026‒6031. DOI: 10.1128/AEM.00606-08.10.1128/AEM.00606-08256596718621872 Search in Google Scholar

41. Quílez, J., Vergara-Castiblanco, C., Monteagudo, L., Del Cacho, E., Sánchez-Acedo, C., 2011: Multilocus fragment typing and genetic structure of Cryptosporidium parvum isolates from pre-weaned calves with diarrhea in Spain. Appl. Environ. Microbiol., 77, 7779–7786. DOI: 10.1128/AEM. 00751-11.10.1128/AEM.00751-11 Search in Google Scholar

42. Robertson, L. J., Gjerde, B. K., 2007: Oocysts of Cryptosporidium: Challenging opponents ? Trendy Parasitol., 23, 344–347.10.1016/j.pt.2007.06.00217581791 Search in Google Scholar

43. Robinson, G., Chalmers, R. M., 2012: Evaluation of polymorphic genetic markers for multilocus typing of Cryptosporidium parvum and Cryptosporidium hominis. Exp. Parasitol., 132, 200–215.10.1016/j.exppara.2012.06.01622781277 Search in Google Scholar

44. Rueckert, S., Betts, E. L., Tsaousis, A. D., 2019: The symbiotic spectrum: Where do the gregarines fit ? Trends Parasitol., 35, 687–694. DOI: 10.1016/j.pt.2019.06.013.10.1016/j.pt.2019.06.01331345767 Search in Google Scholar

45. Ryan, U., Fayer, R., Xiao, L., 2014: Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology, 141, 1667–1685. DOI: 10.1017/S 0031182014001085.10.1017/S0031182014001085 Search in Google Scholar

46. Ryan, U., Zahedi, A., Feng, Y., Xiao, L., 2021: Update on zoonotic Cryptosporidium species and genotypes in humans. Animals, 11, 3307. DOI: 10.3390/ani11113307.10.3390/ani11113307861438534828043 Search in Google Scholar

47. Salomaki, E. D., Terpis, K. X., Rueckert, S., 2021: Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans. BMC Biol., 19, 77. DOI: 10.1186/s12915-021-01007-2.10.1186/s12915-021-01007-2805105933863338 Search in Google Scholar

48. Santin, M., 2020: Cryptosporidium and Giardia in ruminants. Vet. Clin. North. Am. Food Anim. Pract., 36, 223‒238. DOI: 10.1016/j.cvfa.2019.11.005.10.1016/j.cvfa.2019.11.00532029186 Search in Google Scholar

49. Slavin, D., 1955: Cryptosporidium meleagridis (sp. nov.). J. Comp. Pathol., 65, 262–266. DOI: 10.1016/s0368-1742 (55)80025-2.10.1016/S0368-1742(55)80025-2 Search in Google Scholar

50. Souto, A. C. P., Bonfietti, L. X., Ferreira-Paim, K., Trilles, L., Martins, M., Ribeiro-Alves, M., Reynolds, T. B., 2016: Population genetic analysis reveals high genetic diversity in the Brazilian population of Cryptococcus gattii VGII and shifts the global origin from the Amazon rainforest to the semi-arid desert of northeastern Brazil. PLOS Negl. Trop. Dis., 10, e0004885. DOI: 10.1371/journal.pntd.0004885.10.1371/journal.pntd.0004885498698027529479 Search in Google Scholar

51. Tanriverdi, S., Widmer, G., 2006: Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis. Infect. Genet. Evol., 6, 113–122.10.1016/j.meegid.2005.02.00216503512 Search in Google Scholar

52. TRF: Tandem Repeats Finder. Available at http://tandem.bu.edu/trf/trf.html. Updated November 08, 2022. Accessed November 08, 2022. Search in Google Scholar

53. Tyzzer, E. E., 1907: A sporozoan found in the peptic glands of the common mouse. In Proceedings of the Society for Experimental Biology and Medicine, 5, 12–13. DOI: 10.3181/00379727-5-5.10.3181/00379727-5-5 Search in Google Scholar

54. Tyzzer, E. E., 1912: Cryptosporidium parvum (sp. nov.), a coccidium found in the small intestine of the common mouse. Arch. Protistenkd., 26, 394–412. Search in Google Scholar

55. Urwin, R., Maiden, M. C., 2003: Multi-locus sequence typing: A tool for global epidemiology. Trends Microbiol., 11, 479–87.10.1016/j.tim.2003.08.00614557031 Search in Google Scholar

56. Wang, R., Jian, F., Zhang, L., Ning, C., Liu, A., 2012: Multilocus sequence subtyping and genetic structure of Cryptosporidium muris and Cryptosporidium andersoni. PLOS ONE, 7, 43782. DOI: 10.1371/journal.pone.0043782.10.1371/journal.pone.0043782342716122937094 Search in Google Scholar

57. Wang, R., Zhang, L., Ning, C., Feng, Y., Jian, F., 2008: Multilocus phylogenetic analysis of Cryptosporidium andersoni (Apicomplexa) isolated from camel (Camelus bactrianus) in China. Parasitol. Res., 102, 915–920. DOI: 10.1007/s00436-007-0851-x.10.1007/s00436-007-0851-x18165930 Search in Google Scholar

58. Widmer, G., Caccio, S. M., 2015: Comparison of sequence and length polymorphism for genotyping Cryptosporidium isolates. Parasitology, 142, 1080–1085. DOI: 10.1017/S003 1182015000396.10.1017/S0031182015000396 Search in Google Scholar

59. Xiao, L., 2010: Molecular epidemiology of cryptosporidiosis: An update. Exp. Parasitol., 124, 80–89. DOI: 10.1016/j. exppara.2009.03.018.10.1016/j.exppara.2009.03.018 Search in Google Scholar

60. Xiao, L., Escalante, L., Yang, C., Sulaiman, I., Escalante, A. A., Montali, R. J., Fayer, A., 1999: Phylogenetic analysis of Cryptosporidium parasites based on the small subunit rRNA gene locus. Appl. Environ. Microbiol., 65, 1578–1583.10.1128/AEM.65.4.1578-1583.19999122310103253 Search in Google Scholar

61. Xiao, L., Ryan, U. M., 2004: Cryptosporidiosis: An update in molecular epidemiology. Curr. Opin. Infect. Dis., 17, 483–490.10.1097/00001432-200410000-0001415353969 Search in Google Scholar

62. Xu, P., Widmer, G., Wang, Y., Ozaki, L. S., Alves, J. M., Serrano, M. G., 2004: The genome of Cryptosporidium hominis. Nature, 431, 1107–1112.10.1038/nature0297715510150 Search in Google Scholar

63. Yadav, P., Mirdha, B., Makharia, G., Chaudhry, R., 2017: Multilocus sequence typing of Cryptosporidium hominis from northern India. Indian J. Med. Res., 145, 102. DOI: 10. 4103/ijmr.IJMR_1064_14.10.4103/ijmr.IJMR_1064_14546055528574022 Search in Google Scholar

64. Yang, R., Jacobson, C., Gardner, G., Carmichael, I., Campbell, A. J., 2014: Longitudinal prevalence, oocyst shedding and molecular characterization of Cryptosporidium species in sheep in four states in Australia. Vet. Parasitol., 200, 50–58. DOI: 10.1016/j.vetpar.2013.11.014.10.1016/j.vetpar.2013.11.01424332963 Search in Google Scholar

65. Zahedi, A., Ryan, U., 2020: Cryptosporidium – an update with an emphasis on food and waterborne transmission. Res. Vet. Sci., 2020, 132, 500–512. DOI: 10.1016/j.rvsc.2020.08.002.10.1016/j.rvsc.2020.08.00232805698 Search in Google Scholar

66. Zhao, G., H., Ren, W., X., Gao, M., Bian, Q., Q., Hu, B., 2013: Genotyping of Cryptosporidium andersoni in cattle in Shaanxi Province, Northwest China. PLOS ONE, 8, 60112. DOI: 10.1371/journal.pone.0060112.10.1371/journal.pone.0060112361334823560072 Search in Google Scholar

eISSN:
2453-7837
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine