Open Access

The Efficiency of the Natural Collagen Coating in the Treatment of Extensive Chronic Defects of the Skin and Surrounding Tissues in Dogs


Cite

1. Aravinthan, A., Park, J. K., Hossain, M. A., Sharmila, J., Kim, H. J., Kang, C. W., et al., 2018: Collagen-based sponge hastens wound healing via decrease of inflammatory cytokines. Biotech., 3, 8, 1‒9. DOI: 10.1007/s13205-018-14 97-3.10.1007/s13205-018-1497-3 Search in Google Scholar

2. Beckman, M. J., Shields, K. J., Diegelmann, R. F., 2004: Collagen. In Dekker, M.: Encyclopedia of Biomaterials and Biomedical Engineering, New York, Inc., 324‒334. Search in Google Scholar

3. Bohling, M. W., Henderson, R. A., Swaim, S. F., Kincaid, S. A., Wright, J. C., 2004: Cutaneous wound healing in the cat: a macroscopic description and comparison with cutaneous wound healing in the dog. Vet. Surg., 33, 579‒587. DOI: 10.1111/j.1532-950X.2004.04081.x.10.1111/j.1532-950X.2004.04081.x15659012 Search in Google Scholar

4. Boyce, S. T., Christianson, D. J., Hansbrough, J. F., 1988: Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Res., 22, 10, 939‒957. DOI: 10.1002/jbm.820221008.10.1002/jbm.8202210082464601 Search in Google Scholar

5. Clark, R. F., Ghosh, K., Tonnesen, M. G, 2007: Tissue engineering for cutaneous wounds. J. Invest. Dermatol., 127, 5, 1018‒1029. DOI: 10.1038/sj.jid.5700715.10.1038/sj.jid.570071517435787 Search in Google Scholar

6. Colak, B., Yormaz, S., Ece, I., Çalişir, A., Körez, K., Çınar, M., et al., 2022: Comparison of collagen granule dressing versus conventional dressing in patients with diabetic foot ulcer. Int. J. Low Extrem. Wounds, 21, 3, 279‒289. DOI: 10.1177/1534734620938988.10.1177/153473462093898832734790 Search in Google Scholar

7. Ekaputra, A. K., Prestwich, G. D., Cool, S. M., Hutmacher, D. W., 2011: The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ɛ-caprolac-tone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials, 32, 32, 8108‒8117. DOI: 10.1016/j.biomaterials.2011. 07.022.10.1016/j.biomaterials.2011.07.022 Search in Google Scholar

8. Hadjizadeh, A., Doillon, C. J., 2010: Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J. Tissue Eng. Regen. Med., 4, 7, 524‒531. DOI: 10.1002/term.269.10.1002/term.26920872739 Search in Google Scholar

9. Jannesari, M., Varshosaz, J., Morshed, M., Zamani, M., 2011: Composite poly (vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int. J. Nanomed., 6, 993‒1003. DOI: 10.2147/IJN.S17595.10.2147/IJN.S17595312440321720511 Search in Google Scholar

10. Junker, J. P., Kamel, R. A., Caterson, E. J., Eriksson, E., 2013: Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv. Wound Care, 2, 7, 348‒356. DOI: 10.1089/wound.2012.0412.10.1089/wound.2012.0412384286924587972 Search in Google Scholar

11. Karimi, K., Odhav, A., Kollipara, R., Fike, J., Stanford, C., Hall, J. C., 2017: Acute cutaneous necrosis: a guide to early diagnosis and treatment. J. Cutan. Med. Surg., 21, 5, 425‒437. DOI: 10.1177/1203475417708164.10.1177/120347541770816428470091 Search in Google Scholar

12. Lazarus, G. S., Cooper, D. M., Knighton, D. R., Margolis, D. J., Percoraro, R. E., Rodeheaver, G., et al., 1994: Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen., 2, 3, 165‒170. DOI: 10.1001/archderm.1994.01690040093015.10.1001/archderm.1994.01690040093015 Search in Google Scholar

13. Leipziger, L. S., Glushko, V., DiBernardo, B., Shafaie, F., Noble, J., Nichols, J., et al., 1985: Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings. J. Am. Acad. Dermatol., 12, 2, 409‒419. DOI: 10.1016/s0190-9622(85)80004-9.10.1016/S0190-9622(85)80004-9 Search in Google Scholar

14. Lindley, L. E., Stojadinovic, O., Pastar, I., Tomic-Canic, M., 2016: Biology and biomarkers for wound healing. Plast. Reconstr. Surg., 138, 3, 18‒28. DOI: 10.1097/PRS.0000000 000002682.10.1097/PRS.0000000000002682 Search in Google Scholar

15. Lynn, A. K., Yannas, I. V., Bonfield, W., 2004: Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B Appl. Biomater., 71, 2, 343‒354. DOI: 10.1002/jbm.b.30096.10.1002/jbm.b.3009615386396 Search in Google Scholar

16. Parenteau-Bareil, R., Gauvin, R., Berthod, F., 2010: Collagen-based biomaterials for tissue engineering applications. Materials, 3, 3, 1863‒1887. DOI: 10.3390/ma3031863.10.3390/ma3031863 Search in Google Scholar

17. Parrish, W. R., Roides, B., 2017: Physiology of blood components in wound healing: an appreciation of cellular cooperativity in platelet rich plasma action. J. Exerc. Sports Orthop., 4, 1‒14. DOI: 10.15226/2374-6904/4/2/00156.10.15226/2374-6904/4/2/00156 Search in Google Scholar

18. Pavletic, M. M., 2018: Basic principles of wound management. In Pavletic, M. M.: Atlas of Small Animal Wound Management and Reconstructive Surgery, 4th edn., John Wiley and Sons Inc., 32‒43.10.1002/9781119267539 Search in Google Scholar

19. Rancan, F., Blume-Peytavi, U., Vogt, A., 2014: Utilization of biodegradable polymeric materials as delivery agents in dermatology. Clin. Cosmet. Investig. Dermatol., 7, 23‒34. DOI: 10.2147/CCID.S39559.10.2147/CCID.S39559389148824470766 Search in Google Scholar

20. Rho, K. S., Jeong, L., Lee, G., Seo, B. M., Park, Y. J., Hong, S. D., et al., 2006: Electrospinning of collagen nanofibers: effects on the behaviour of normal human keratinocytes and early-stage wound healing. Biomaterials, 27, 8, 1452‒1461. DOI: 10.1016/j.biomaterials.2005.08.004.10.1016/j.biomaterials.2005.08.00416143390 Search in Google Scholar

21. Rubio-Elizalde, I., Bernáldez-Sarabia, J., Moreno-Ulloa, A., Vilanova, C., Juárez, P., Licea-Navarro, et al., 2019: Scaffolds based on alginate-PEG methyl ether methacrylate-Moringa oleifera-Aloe vera for wound healing applications. Carbohydr. Polym., 206, 455‒467. DOI: 10.1016/j. carbpol.2018.11.027.10.1016/j.carbpol.2018.11.027 Search in Google Scholar

22. Ruszczak, Z., 2003: Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev., 55, 12, 1595‒1611. DOI: 10.1016/j.addr.2003.08.003.10.1016/j.addr.2003.08.00314623403 Search in Google Scholar

23. Sanon, S., Hart, D. A., Tredget, E. E., 2016: Molecular and cellular biology of wound healing and skin regeneration. In Albanna, M. Z., Holmes, J. H. (Eds.): Skin Tissue Engineering and Regenerative Medicine, Elsevier Inc., New York, 19‒47.10.1016/B978-0-12-801654-1.00002-4 Search in Google Scholar

24. Schlegel, A. K., Möhler, H., Busch F., Mehl, A., 1997: Pre-clinical and clinical studies of a collagen membrane (Bio-Gide). Biomaterials, 18, 7, 535‒538. DOI: 10.1016/s0142-96 12(96)00175-5.10.1016/S0142-9612(96)00175-5 Search in Google Scholar

25. Stupack, D. G., 2005: Integrins as a distinct subtype of dependence receptors. Cell Death Differentiation, 12, 8, 1021‒1030. DOI: 10.1038/sj.cdd.4401658.10.1038/sj.cdd.440165815933741 Search in Google Scholar

26. Talikowska, M., Fu, X., Lisak, G., 2019: Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens. Bioelectron., 135, 50‒63. DOI: 10.1016/j. bios.2019.04.001.10.1016/j.bios.2019.04.001 Search in Google Scholar

27. Veves, A., Sheehan, P., Pham, H. T., 2002: A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch. Surg., 137, 7, 822‒827. DOI: 10.1001/archsurg.137.7.822.10.1001/archsurg.137.7.82212093340 Search in Google Scholar

28. Wang, X., Cheng, F., Liu, J., Smått, J. H., Gepperth, D., Lastusaari, M., et al., 2016: Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater., 46, 286‒298. DOI: 10.1016/j.actbio.2016.09.021.10.1016/j.actbio.2016.09.02127646503 Search in Google Scholar

29. Williams, J., 2009: Decision making in wound closure. In Williams, J. M., Moores, A.: BSAVA Manual of Canine and Feline Wound Management and Reconstruction, 2nd edn., Wiley Blackwell, Hoboken, NJ, 25‒36.10.22233/9781905319558.3 Search in Google Scholar

30. Yannas, I. V., 1990: Biologically active analogues of the extracellular matrix: artificial skin and nerves. Angew. Chem. Int. Ed. Engl., 29, 1, 20‒35. DOI: 10.1002/anie.199000201.10.1002/anie.199000201 Search in Google Scholar

eISSN:
2453-7837
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine