1. bookVolume 66 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Prevalence and Phylodiversity of ESBL-Producing Coliforms Isolated from Ruminant Mastitis in Nigeria

Published Online: 31 Mar 2022
Volume & Issue: Volume 66 (2022) - Issue 1 (March 2022)
Page range: 1 - 14
Received: 14 Sep 2021
Accepted: 22 Jan 2022
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The public health threat posed by Extended-spectrum beta-lactamase producing E. coli (ESBL-EC) in food animal production systems has attracted global attention. Data on the prevalence, diversity and genetic characteristics of ESBL-producing coliforms are key to advocacy on promoting responsible antimicrobial stewardship and proper planning of control strategies. The coliforms were isolated from 1052 milk samples of 160 cows, 103 ewes and 103 does with mastitis in Plateau State, Nigeria and analysed for ESBL production by phenotypic, biochemical, antimicrobial sensitivity and genetic characterization. The percentage of occurrence of clinical mastitis in cows, ewes, and does were 0.2 %, 0 %, 1.5 % respectively, while the percentage occur-rence of subclinical mastitis in ruminants were 18.1 %, 28.2 % and 38.3 % respectively. From the 677 isolates, 31.3 % (n = 212) were ESBL producing coliforms, with a prevalence of 48.6 %, 18.4 %, 12.7 %, 8.9 %, 5.7 %, 3.8 % and 1.9 % for E. coli, K. pneumoniae, C. freundii, K. aerogenes, S. marcescens, K. oxytoca and E. cloacae, respectively. The genetic characterization revealed a higher prevalence of blaCTX-M than blaTEM in the samples analysed (24.39 % vs. 12.19 %). High pairwise identity was observed among the blaCTX-M and blaTEM gene sequences obtained in this study, but they displayed high phylodiversity with sequences from ruminants and humans from other climes. The blaSHV gene was not detected. Multidrug resistances especially to the commonly used antimicrobials; ofloxacin, gentamycin and streptomycin in veterinary practice in Nigeria were observed. This has public health implications considering the fact that consumption of raw unpasteurized milk is a common practice in some cultures in Nigeria. Such practise will facilitate the transfer of multidrug resistant coliforms to humans resulting in the complications of treatment outcomes. To the best of our knowledge this is the first genetic characterization of ESBL-producing agents from ruminant mastitis in Nigeria.

Keywords

1. Abdellah, C., Fouzia, R. F., Abdelkader, C., Rachida, S. B., Mouloud, Z., 2009: Prevalence and antimicrobial susceptibility of salmonella isolates from chicken carcasses and giblets in Meknés, Morocco. African J. Microbiol. Res., 3, 5, 215—219. Search in Google Scholar

2. Adamu, H. O., Hussaini, R. O., Obasuyi, C., Anagha, L. I., Okoduwa, G. O., 2020: Prevalence of mastitis in Nigerian livestock: A review. Open Vets., 1, 20—29. DOI: 10.1515/ovs-2020-0101.10.1515/ovs-2020-0101 Search in Google Scholar

3. Ali, T., Rahman, S. U., Zhang, L., Shahid, M., Zhang, S., Liu, G., et al., 2016: ESBL-producing Escherichia coli from cows suffering mastitis in China contain clinical class 1 integrons with CTX-M linked to ISCR1. Front. Microbiol., 7, 1931. DOI: 10.3389/fmicb.2016.01931.10.3389/fmicb.2016.01931512780827965653 Search in Google Scholar

4. Aworh, M. K., Kwaga, J., Okolocha, E., Harden, L., Hull, D., Hendriksen, R. S., Thakur, S., 2020: Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook, 2, 8. DOI: 10.1186/s42522-020-00014-7.10.1186/s42522-020-00014-7799345733829130 Search in Google Scholar

5. Balows, A., Hausier, W. J., Hermann, K. L., Isengeng, J. D., Shadomy, J. H., 1991: Manual of Clinical Microbiology, 5th edn., American Society of Microbiology, Washington D. C., USA, 13841385. Search in Google Scholar

6. Carattoli, A., 2008: Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect., 14 (Suppl. 1), 117—123. DOI: 10.111/j.1469-0691.2007.1851.10.1111/j.1469-0691.2007.01851.x18154535 Search in Google Scholar

7. Contreras, G. A., Rodríguez, J. M., 2011: Mastitis: comparative aetiology and epidemiology. J. Mammary Gland Biol. Neoplasia, 16, 339356. DOI: 10.1007/s10911-011-9234-0.10.1007/s10911-011-9234-021947764 Search in Google Scholar

8. CLSI, 2014: Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard. 9th edn., Document M2-A9, Clinical and Laboratory Standards Institute, Wayne, PA, 913. Search in Google Scholar

9. Dahmen, S., Métayer, V., Gay, E., Madec, J. Y., Haenni, M., 2013: Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol., 162, 793799. DOI: 10.1016/j.vetmic.2012.10.015.10.1016/j.vetmic.2012.10.01523127568 Search in Google Scholar

10. Datta, N., Kontomichalou, P., 1965: Penicillinase synthesis controlled by infectious R factor in Enterobacteriaceae. Nature, 208, 239—244.10.1038/208239a05326330 Search in Google Scholar

11. David, R. C., 2011: Staining and interpretation of smears. In Laboratory Studies in Applied Microbiology, Rice University, USA, 7478. Search in Google Scholar

12. Ejaz, H., Younas, S., Abosalif, K. O. A., Junaid, K., Alzahrani, B., Alsrhani, A., et al., 2021: Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from faecal specimens of animals. PLOS ONE, 16, 1, 115. DOI: 10.1371/journal. pone.0245126. Search in Google Scholar

13. Enoch, D. A., Brown, F., Sismey, A. W., Mlangeni, D. A., Curran, M. D., Karas, J. A., et al., 2012: Epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae in a UK district hospital; an observational study. J. Hosp. Infect., 81, 4, 270277. DOI: 10.1016/j.jhin.2012. 05.006. Search in Google Scholar

14. Ezeanya, C. C., Agbakoba, N. R., Ejike, C. E., Okwelogu, S. I., 2017: Evaluation of a chromogenic medium for the detection of ESBL with comparison to double disk synergy test. British J. Med. Med. Res., 21, 12, 111. DOI: 10.9734/BJMMR/2017/33259.10.9734/BJMMR/2017/33259 Search in Google Scholar

15. Falagas, M. E., Karageorgopoulos, D. E., 2009: Extended-spectrum beta-lactamase-producing organisms. J. Hosp. Inf., 73, 4, 345354. DOI: 10.1016/j.jhin.2009.02.021.10.1016/j.jhin.2009.02.02119596491 Search in Google Scholar

16. Garedew, L., Berhanu, A., Mengesha, D., Tsegay, G., 2012: Identification of gram-negative bacteria from critical control points of raw and pasteurized cow milk consumed at Gondar town and its suburbs, Ethiopia. BMC Pub. Hlth., 12, 950, 17. DOI: 10.1186/1471-2458-12-950.10.1186/1471-2458-12-950352735923131015 Search in Google Scholar

17. Geser, N. S., Stephan, R., Hächler, H., 2012: Occurrence and characteristics of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res., 8, 21, 19. DOI: 10.1186/1746-6148-8-21. DOI: 10.1186/1746-6148-8-21.10.1186/1746-6148-8-21 Search in Google Scholar

18. Ghuysen, J. M., 1991: Serine beta-lactamases and penicillin-binding proteins. Ann. Rev. Microbiol., 45, 3767. DOI: 10.1146/annurev.mi.45.100191.000345.10.1146/annurev.mi.45.100191.000345 Search in Google Scholar

19. Goosens, H., 2001: Mystic programme: summary of European data from 1997 to 2000. Diagn. Microbiol. Infect. Dis., 41, 183189. DOI: 10.1016/s0732-8893(01)00320-0.10.1016/S0732-8893(01)00320-0 Search in Google Scholar

20. Gundran, R. S., Cardenio, P. A., Villanueva, M. A., Sison, F. B., Benigno, C. C., Kreausukon, K., et al., 2019: Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet. Res., 15, 227, 19. DOI: 10.1186/s12917-019-1975-9.10.1186/s12917-019-1975-9661207931277658 Search in Google Scholar

21. Hall, T. A., 1999: BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 9598. DOI: 10.14601/PHYTOPATHOL_MEDITERR-14998U1.29. Search in Google Scholar

22. Harada, K., Nakai, Y., Kataoka, Y., 2012: Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harbouring CTXM-27-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol. Immunol., 56, 480485. DOI: 10.1111/j.1348-0421. 2012.00463. Search in Google Scholar

23. Jena, J., Debata, N. K., Sahoo, R. K., Gaur, M., Subudhi, E., 2017: Genetic diversity study of various β-lactamase-producing multidrug-resistant Escherichia coli isolates from a tertiary care hospital using ERIC-PCR. Indian J. Med. Res., 146 (Suppl.), S23S29. DOI: 10.4103/ijmr.IJMR_575_16.10.4103/ijmr.IJMR_575_16573556729205192 Search in Google Scholar

24. Kiratisin, P., Apisarnthanarak, A., Laesripa, C., Saifon, P., 2008: Molecular characterization and epidemiology of extended-spectrum-beta-lactamase producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob. Agents Chemother., 2, 2818—2824. DOI: 10. 1128/AAC.00171-08.10.1128/AAC.00171-08249313618505851 Search in Google Scholar

25. Klibi, A., Jouini, A., El-Andolsi, R. B., Kmiha, S., Hamda, C. B., Ghedira, K., et al., 2019: Epidemiology of β-lactamase-producing staphylococci and Gram negative bacteria as cause of clinical bovine mastitis in Tunisia. Biomedic. Res. Internat., 2165316, 1—9. DOI: 10.1155/2019/2165316.10.1155/2019/2165316673258131534954 Search in Google Scholar

26. Librado, P., Rozas, J., 2009: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformat., 25, 1451—1452. DOI: 10.1093/bioinformatics/btp187.10.1093/bioinformatics/btp18719346325 Search in Google Scholar

27. Madec, J. Y., Poirel, L., Saras, E., Gourguechon, A., Girlich, D., Nordmann, P., et al., 2012: Non-ST131 Escherichia coli from cattle harbouring human-like blaCTX-M-15-carrying plasmids. J. Antimicrob. Chemother., 67, 578—581. DOI: 10.1093/jac/dkr542.10.1093/jac/dkr54222210752 Search in Google Scholar

28. Marshall, B. M., Levy, S. B., 2011: Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev., 24, 718—33. DOI: 10.1128/CMR.00002-11.10.1128/CMR.00002-11319483021976606 Search in Google Scholar

29. Mbuk, E. U., Kwaga, J. K. P., Bale, J. O. O., Boro, L. A., Umoh, J. U., 2016: Coliform organisms associated with milk of cows with mastitis and their sensitivity to commonly available antibiotics in Kaduna State, Nigeria. J. Vet. Med. Anim. Health., 8, 12, 228—236. DOI: 10.5897/JVMAH2016. 0522. Search in Google Scholar

30. Muhire, B. M., Varsani, A., Martin, D. P., 2014: SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLOS ONE, 9, 1—8. DOI: 10.1371/journal.pone.0108277.10.1371/journal.pone.0108277417812625259891 Search in Google Scholar

31. Müller, E. E., Grabow, W. O. K., Ehlers, M. M., 2003: Immunomagnetic separation of Escherichia coli O157:H7 from environmental and wastewater in South Africa. Water South Africa, 29, 4, 427—432. DOI: 10.4314/wsa.v2914. 5048. DOI: 10.4314/wsa.v29i4.5048. Search in Google Scholar

32. Overdevest, I., Willemsen, I., Rijnsburger, M., Eustace, A., Xu, L., Hawkey, P., et al., 2011: Extended-spectrum-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg. Infect. Dis., 17, 1216—1222. DOI: 10. 3201/eid1707.110209.10.3201/eid1707.110209338140321762575 Search in Google Scholar

33. Ramírez-Soriano, A., Ramos-Onsins, S. E., Rozas, J., Calafell, F., Navarro A., 2008: Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics, 179, 555—557. DOI: 10.1534/genetics.107.083006.10.1534/genetics.107.083006239063218493071 Search in Google Scholar

34. Reuland, E. A., Hays, J. P., de Jongh, D. M., Abdelrehim, E., Willemsen, I., Kluytmans, J. A., et al., 2014: Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PLOS ONE, 9, 3, e91396. DOI: 10. 1371/journal.pone.0091396.10.1371/journal.pone.0091396395835324642853 Search in Google Scholar

35. Sader, H. S., Gales, A. C., Granacher, T. D., Pfaller, M. A., Jones, R. N., 2000: Prevalence of antimicrobial resistance among respiratory tract isolates in Latin America: results from SENTRY antimicrobial surveillance program (1997—98). Braz. J. Infect. Dis., 4, 245—254. Search in Google Scholar

36. Sawant, A. A., Sordillo, L. M., Jayarao B. M., 2005: A survey on antibiotic usage in dairy herds in Pennsylvania. J. Dairy Sci., 88, 2991—2999. DOI: 10.3168/jds.S0022-0302 (05)72979-9. Search in Google Scholar

37. Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D., Kamal, M. A., 2015: Antibiotic resistance and extended spectrum betalactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci., 22, 1, 90—101. DOI: 10.1016/j.sjbs.2014.08.002 PMID: 25561890.10.1016/j.sjbs.2014.08.002428162225561890 Search in Google Scholar

38. Sun, Y., Zeng, Z., Chen, S., Ma, J., He, L., Liu, Y., et al., 2010: High prevalence of blaCTX-M extended-spectrum b-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect., 16, 1475—1481. DOI: 10.1111/j.1469-0691.2010. 03127. Search in Google Scholar

39. Tamura, K., Stecher, G., Daniel, P. D., Alan, F. A., Kumar, S., 2013: MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30, 2725—2759. DOI: 10.1093/molbev/mst197.10.1093/molbev/mst197384031224132122 Search in Google Scholar

40. Tekiner, İ. H., Özpınar, H., 2016: Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz. J. Microbiol., 47, 2, 444—451. DOI: 10.1016/j.bjm.2015.11.034.10.1016/j.bjm.2015.11.034487467526991276 Search in Google Scholar

41. Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acid Res., 22, 22, 4573—4680. DOI: 10.1093/nar/22.22.4673.10.1093/nar/22.22.46733085177984417 Search in Google Scholar

42. Villegas, M. V., Correa, A., Perez, F., Miranda, M. C., Zuluaga, T., Quinn, J. P., 2004: Colombian Nosocomial Resistance Study Group. Prevalence and characterization of extended-spectrum beta-lactamases in Klebsiella pneumoniae and Escherichia coli isolates from Colombian hospitals. Diagn. Microbiol. Infect. Dis., 49, 217—222. DOI: 10.1016/j. diagmicrobio.2004.03.001. Search in Google Scholar

43. Yu, Z. N., Wang, J., Ho, H., Wang, Y. T., Huang, S. N., Han, R. W., 2019: Prevalence, antimicrobial-resistance phenotypes and genotypes of Escherichia coli isolated from raw milk samples from mastitis cases in four regions of China. J. Glob. Antimicrob. Resist., 22, 94—101. Accessed 5th February, 2020 on https://www.sciencedirect.com/science/article/pii/S2213716519303303; DOI: 10.1016/j.jgar.2019.12.016.10.1016/j.jgar.2019.12.01631887413 Search in Google Scholar

44. Zeryehun, T., Abera, G., 2017: Prevalence and bacterial isolates of mastitis in dairy farms in selected districts of Eastern Harrarghe Zone, Eastern Ethiopia. J. Vet. Med., 2017, 1—7. DOI: 10.1155/2017/6498618.10.1155/2017/6498618535297128352648 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo