1. bookVolume 65 (2021): Issue 4 (December 2021)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
access type Open Access

Fascinating Dendritic Cells—Sentinel Cells of the Immune System a Review

Published Online: 30 Dec 2021
Volume & Issue: Volume 65 (2021) - Issue 4 (December 2021)
Page range: 12 - 19
Received: 25 Aug 2021
Accepted: 04 Oct 2021
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

Dendritic cells (DC) are specialized antigen presenting cells which have the unique ability to activate naive T-lymphocytes. Their role in the immune system is much more sophisticated than it seems, as they do not kill the pathogens directly, but provide a long-lasting antigen specific immune response thanks to that sufficiently bridging the innate and the adaptive immunity. In recent years, there has been a growing interest in studies of their role in immune regulation, autoimmune reactions, as well as in immune responses against pathogens and tumours. Processing and presentation capabilities of a highly specific and unique tumour antigen makes them an interesting tool for stimulating effective anti-tumour immunity. In vitro generations of DC represent a preferred model for more detailed studies of DC biology in other fields. The aim of this review was to discuss the main role of dendritic cells in the body as well as their current use as experimental models for further scientific studies.

Key words

1. Amigorena, S., 2018: Dendritic cells on the way to glory. J. Immunol.,200, 885—886. DOI: 10.4049/jimmunol.1701693.10.4049/jimmunol.170169329358411Search in Google Scholar

2. Amon, L., Lehmann, C. H. K., Heger, L., Heidkamp, G. F., Dudziak, D., 2020: The ontogenetic path of human dendritic cells. Mol. Immunol., 120, 122—129. DOI: 10.1016/j.molimm.2020. in Google Scholar

3. Auray, G., Facci, M. R., van Kessel, J., Buchanan, R., Babiuk, L. A., Gerdts, V., 2010: Differential activation and maturation of two porcine DC populations following TLR ligand stimulation. Mol. Immunol., 47, 2103—2111. DOI: 10.1016/j.molimm.2010. in Google Scholar

4. Auray, G., Keller, I., Python, S., Gerber, M., Bruggmann, R., Ruggli, N., Summerfield, A., 2016: Characterization and transcriptomic analysis of porcine blood conventional and plasmacytoid dendritic cells reveals striking species-specific differences. J. Immunol., 197, 4791—4806. DOI: 10.4049/jimmunol.1600672.10.4049/jimmunol.160067227837108Search in Google Scholar

5. Austyn, J. M., Kupiec-Weglinski, J. W., Morris, P. J., 1988: Migration patterns of dendritic cells in the mouse. Adv. Exper. Med. Biol., 237, 583—589. DOI: 10.1007/978-1-4684-5535-9_89.10.1007/978-1-4684-5535-9_893267063Search in Google Scholar

6. Balan, S., Saxena, M., Bhardwaj, N., 2019: Dendritic cell subsets and locations. Int. Rev. Cell Mol. Biol., 348, 1—8. DOI: 10.1016/bs.ircmb.2019. in Google Scholar

7. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y., Palucka, K., 2000: Immunobiology of dendritic cells. Ann. Rev. Immunol., 18, 767—811. DOI: 10.1146/annurev.immunol.18.1.767.10.1146/annurev.immunol.18.1.76710837075Search in Google Scholar

8. Birbrair, A., Frenette, P. S., 2016: Niche heterogeneity in the bone marrow. Annals NY Acad. Sci., 1370, 1, 82—96. DOI: 10.1111/nyas.13016.10.1111/nyas.13016493800327015419Search in Google Scholar

9. Bol, K. F., Schreibelt, G., Gerritsen, W. R., De Vries, I. J. M., Figdor, C. G., 2016: Dendritic cell-based immunotherapy: State of the art and beyond. Clin. Cancer Res., 22, 1897—1906. DOI: 10.1158/1078-0432.CCR-15-1399.10.1158/1078-0432.CCR-15-139927084743Search in Google Scholar

10. Bonilla, F. A., Oettgen, H. C., 2010: Adaptive immunity. J. Allergy Clin. Immunol., 125, 33—40. DOI: 10.1016/j.jaci. 2009.09.017.Search in Google Scholar

11. Butterfield, L. H., Ribas, A., Dissette, V. B., Amarnani, S. N., Vu, H. T., Oseguera, D., Economou, J. S., 2003: Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res., 9, 3, 998—1008.Search in Google Scholar

12. Carrasco, C. P., Rigden, R. C., Schaffner, R., Gerber, H., Neuhaus, V., Inumaru, S., Summerfield, A., 2001: Porcine dendritic cells generated in vitro: Morphological, phenotypic and functional properties. Immunology, 104, 2, 175—184. DOI: 10.1046/j.1365-2567.2001.01299.x.10.1046/j.1365-2567.2001.01299.x178329611683958Search in Google Scholar

13. Domogalla, M. P., Rostan, P. V., Raker, V. K., Steinbrink, K., 2017: Tolerance through education: How tolerogenic dendritic cells shape immunity. Front. Immunol., 8, 1—14. DOI: 10.3389/fimmu.2017.01764.10.3389/fimmu.2017.01764577064829375543Search in Google Scholar

14. Doulatov, S., Notta, F., Eppert, K., Nguyen, L. T., Ohashi, P. S., Dick, J. E., 2010: Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol., 11, 7, 585—593. DOI: 10.1038/ni.1889.10.1038/ni.188920543838Search in Google Scholar

15. Fairbairn, L., Kapetanovic, R., Sester, D. P., Hume, D. A., 2011: The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J. Leuk. Biol., 89, 6, 855—871. DOI: 10.1189/jlb.1110607.10.1189/jlb.111060721233410Search in Google Scholar

16. García-Nicolás, O., Lewandowska, M., Ricklin, M. E., 2019: Monocyte-derived dendritic cells as model to evaluate species tropism of mosquito-borne Flaviviruses. Cell. Inf. Microbiol., 9, 1—13. DOI: 10.3389/fcimb.2019.00005.10.3389/fcimb.2019.00005636017830746342Search in Google Scholar

17. Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., Yona, S., 2014: Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat. Rev. Immunol., 14, 8, 571—578. DOI: 10.1038/nri3712.10.1038/nri3712463821925033907Search in Google Scholar

18. Hartmann, S. B., Mohanty, S., Skovgaard, K., Brogaard, L., Flagstad, F. B., Emnéus, J., Jungersen, G., 2016: Investigating the role of surface materials and three dimensional architecture on in vitro differentiation of porcine monocyte-derived dendritic cells. PLOS ONE, 11, 6, 1—19. DOI: 10.1371/journal.pone.0158503.10.1371/journal.pone.0158503492895227362493Search in Google Scholar

19. Hsu, F. J., Benike, C., Fagnoni, F., Liles, T. M., Czerwinski, D., 1996: Vaccination of patient with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med., 2, 4, 534—539.10.1038/nm0196-528564842Search in Google Scholar

20. Hu, Z., Ott, P. A., Wu, C. J., 2018: Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 18, 3, 168—182. DOI: 10.1038/nri.2017.131.10.1038/nri.2017.131650855229226910Search in Google Scholar

21. Ishikawa, F., Niiro, H., Iino, T., Yoshida, S., Saito, N., Onohara, S., Akashi, K., 2007: The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. Blood, 110, 10, 3591—3600. DOI: 10.1182/blood-2007-02-071613.10.1182/blood-2007-02-071613207730917664352Search in Google Scholar

22. Kellie, S., Al-Mansour, Z., 2016: Overview of the immune system. In Skwarczynski, M.,Toth, I., (Eds.): Micro and Nanotechnology in Vaccine Development. Oxford, UK, Elsevier 63—81. DOI: 10.1016/B978-0-323-39981-4.00004-X.10.1016/B978-0-323-39981-4.00004-XSearch in Google Scholar

23. Kenmochi, T., Mullen, Y., Miyamoto, M., Stein, E., 1994: Swine as an allotransplantation model. Vet. Immunol. Immunopathol., 43, 1-3, 177—183. DOI: 10.1016/0165-2427(94)90134-1.10.1016/0165-2427(94)90134-1Search in Google Scholar

24. Kim, S. E., Hwang, J. H., Kim, Y. K., Lee, H. T., 2019: Heterogeneity of porcine bone marrow-derived dendritic cells induced by GM-CSF. PLOS ONE, 14, 11, 1—12. DOI: 10.1371/journal.pone.0223590.10.1371/journal.pone.0223590683080631689334Search in Google Scholar

25. Kondo, M., 2010: Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol. Rev., 238, 1, 37—46. DOI: 10.1111/j.1600-065X.2010.00963.x.10.1111/j.1600-065X.2010.00963.x297596520969583Search in Google Scholar

26. Kondo, M., Wagers, A. J., Manz, M. G., Prohaska, S. S., Scherer, D. C., Beilhack, G. F., Weissman, I. L., 2003: Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Ann. Rev. Immunol., 21, 759—806. DOI: 10.1146/annurev.immunol.21.120601.141007.10.1146/annurev.immunol.21.120601.14100712615892Search in Google Scholar

27. Kryczanowsky, F., Raker, V., Graulich, E., Domogalla, M. P., Steinbrink, K., 2016: IL-10-Modulated human dendritic cells for clinical use: identification of a stable and migratory subset with improved tolerogenic activity. J. Immunol., 197, 9, 3607—3617. DOI: 10.4049/jimmunol.1501769.10.4049/jimmunol.150176927683749Search in Google Scholar

28. Larsen, C. P., Kitchie, S. C., Pearson, T. C., Linsley, P. S., Lowry, R. P., 1992: Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations. J. Exp. Med., 176, 4, 1215—1220. DOI: 10.1084/jem.176.4.1215.10.1084/jem.176.4.121521194031328465Search in Google Scholar

29. Lecours, M. P., Segura, M., Lachance, C., Mussa, T., Surprenant, C., Montoya, M., Gottschalk, M., 2011: Characterization of porcine dendritic cell response to Streptococcus suis. Vet. Res., 42, 1, 1—12. DOI: 10.1186/1297-9716-42-72.10.1186/1297-9716-42-72312776721635729Search in Google Scholar

30. Lee, J., Zhou, Y. J., Ma, W., Zhang, W., Aljoufi, A., Luh, T., Liu, K., 2017: Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nat. Immunol., 18, 8, 877—888. DOI: 10.1038/ni.3789.10.1038/ni.3789574322328650480Search in Google Scholar

31. Loss, H., Aschenbach, J. R., Tedin, K., Ebner, F., Lodemann, U., 2018: The inflammatory response to enterotoxigenic E. coli and probiotic E. faecium in a coculture model of porcine intestinal epithelial and dendritic cells. Mediators of Inflammation. Article ID: 9368295. DOI: 10.1155/2018/9368295.10.1155/2018/9368295631711530670931Search in Google Scholar

32. Louie, M. K., Gamboa, A. J., Clayman, R. V., 2009: In vivo models for ureteral stents. Biomat. Tissue Eng. Urol., 42—58. DOI: 10.1533/9781845696375. in Google Scholar

33. Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L., Akashi, K., 2001: Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood, 97, 11, 3333—3341. DOI: 10. 1182/blood.V97.11.3333.10.1182/blood.V97.11.3333Search in Google Scholar

34. McComb, S., Thiriot, A., Krishnan, L., Stark, F., 2013: Introduction to the immune system. Methods Mol. Biol., 1061, 1-20. DOI: 10.1007/978-1-62703-589-7_1.10.1007/978-1-62703-589-7_123963928Search in Google Scholar

35. Monte, A. I. LO., Damiano, G., Palumbo, V. D., Spinelli, G., Buscemi, G., 2015: Renal transplantation by automatic anastomotic device in a porcine model. Artif. Organs, 39, 10, 916—921. DOI: 10.1111/aor.12467.10.1111/aor.1246725900063Search in Google Scholar

36. Mukherji, B., Chakraborty, N. G., Yamasaki, S., Okino, T., Yamase, H., Sporn, J. R., Mauri, F., 1995: Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Nat. Acad. Sci. USA, 92, 17, 8078—8082. DOI: 10.1073/pnas.92.17.8078.10.1073/pnas.92.17.8078412907644541Search in Google Scholar

37. Murphy, T. L., Grajales-Reyes, G. E., Wu, X., Tussiwand, R., Briseño, C. G., Iwata, A., Murphy, K. M., 2016: Transcriptional control of dendritic cell development. Ann. Rev. Immunol., 34, 93—119. DOI: 10.1146/annurev-immunol-032713-120204.10.1146/annurev-immunol-032713-120204513501126735697Search in Google Scholar

38. Naik, S. H., Proietto, A. I., Wilson, N. S., Dakic, A., Schnorrer, P., Fuchsberger, M., Wu, L., 2005: Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-Like Tyrosine Kinase 3 Ligand bone marrow cultures. J. Immunol., 174, 11, 6592—6597. DOI: 10.4049/jimmunol.174.11.6592.10.4049/jimmunol.174.11.659215905497Search in Google Scholar

39. Nedumpun, T., Ritprajak, P., Suradhat, S., 2016: Generation of potent porcine monocyte-derived dendritic cells (MoDCs) by modified culture protocol. Vet. Immunol. Immunopathol., 182, 63—68. DOI: 10.1016/j.vetimm.2016. in Google Scholar

40. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., 1998: Vaccination of melanoma patients with peptideora tumor lysate-pulsed dendritic cells. Nat. Publ. Group., 4, 3, 328—332. DOI: 10.1038/nm0398-328.10.1038/nm0398-3289500607Search in Google Scholar

41. Okada, H., Kalinski, P., Ueda, R., Hoji, A., Kohanbash, G., Donegan, T. E., Lieberman, F. S., 2011: Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients. J. Clin. Oncol., 29, 3, 330—336. DOI: 10.1200/JCO.2010.30.7744.10.1200/JCO.2010.30.7744305646721149657Search in Google Scholar

42. Palucka, K., Banchereau, J., 2013: Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 12, 4, 1—19. DOI: 10. 1038/nrc3258.10.1038/nrc3258343380222437871Search in Google Scholar

43. Parquet, R. A., 2014: Paul Langerhans. Acta Gastroenterol. Latinoamericana, 44, 4, 282.Search in Google Scholar

44. Perry, J. S. A., Lio, C. W. J., Kau, A. L., Nutsch, K., Yang, Z., Gordon, J. I., Hsieh, C. S., 2014: Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity, 41, 3, 414—426. DOI: 10.1016/j.immuni.2014. in Google Scholar

45. Raker, V. K., Domogalla, M. P., Steinbrink, K., 2015: Tolerogenic dendritic cells for regulatory T cell induction in man. Front. Immunol., 6, 1—11. DOI: 10.3389/fimmu.2015.00569.10.3389/fimmu.2015.00569Search in Google Scholar

46. Reis E Sousa, C., 2006: Dendritic cells in a mature age. Nat. Rev. Immunol., 6, 6, 476—483. DOI: 10.1038/nri1845.10.1038/nri1845Search in Google Scholar

47. Rosenblatt, J., Avivi, I., Vasir, B., Uhl, L., Munshi, N. C., Katz, T., Avigan, D. 2013: Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin. Cancer Res., 19, 13, 3640—3648. DOI: 10.1158/ 1078-0432.CCR-13-0282.10.1158/1078-0432.CCR-13-0282Search in Google Scholar

48. Sabado, R. L., Balan, S., Bhardwaj, N., 2017: Dendritic cell-based immunotherapy. Cell Res., 27, 1, 74—95. DOI: 10.1038/ cr.2016.157.10.1038/cr.2016.157Search in Google Scholar

49. Sachs, D. H., 1994: The pig as a potential xenograft donor. Vet. Immunol. Immunopathol., 43, 1—3, 185–191. DOI: 10.1016/0165-2427(94)90135-X.10.1016/0165-2427(94)90135-XSearch in Google Scholar

50. Sakuta, H., Azuma, M., Yagita, H., Okumura, K., Linsley, P. S., Ikehara, S., Steinman, R. M., 1994: The tissue distribution of the B7-2 costimula tor in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J. Exper. Med., 180, 1849—1860. DOI: 10.1084/jem.180.5.1849.10.1084/jem.180.5.184921917297525841Search in Google Scholar

51. Sanon, S., Hart, D. A., Tredget, E. E., 2016: Molecular and cellular biology of wound healing and skin regeneration. In Albanna, H. Z. Holmes IV, J.H., (Eds.): Skin Tissue Engineering and Regenerative Medicine II. E-Book, Elsevier. DOI: 10. 1016/B978-0-12-801654-1.00002-4.Search in Google Scholar

52. Santos, P. M., Butterfield, L. H., 2018: Dendritic cell-based cancer vaccines. J. Immunol., 2, 16, 18—19. DOI: 10.4049/jim munol.1701024.Search in Google Scholar

53. Sarivalasis, A., Boudousquié, C., Balint, K., Stevenson, B. J., Gannon, P. O., Iancu, E. M., Kandalaft, L. E., 2019: A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J. Transl. Med., 17, 1, 1—10. DOI: 10.1186/s12967-019-02133-w.10.1186/s12967-019-02133-w688049231771601Search in Google Scholar

54. Sattler, S., 2017: The role of the immune system beyond the fight against infection. In Sattler, S., Kennedy-Lydon T. (Eds.): The Immunology of Cardiovascular Homeostasis and Pathology (Advances in Experimental Medicine and Biology, 1003), 1st edn., 3—14. DOI: 10.1007/978-3-319-57613-8.10.1007/978-3-319-57613-8Search in Google Scholar

55. Saxena, M., Balan, S., Roudko, V., Bhardwaj, N., 2018: Towards superior dendritic-cell vaccines for cancer therapy. Nat. Biomed. Eng., 2, 6, 341—346. DOI: 10.1038/s41551-018-0250-x.10.1038/s41551-018-0250-x608953330116654Search in Google Scholar

56. Schuler, G., Steinman, R. M., 1985: Murine epidermal langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exper. Med., 161, 3, 526—546. DOI: 10.1084/jem.161.3.526.10.1084/jem.161.3.52621875843871837Search in Google Scholar

57. Scully, C., Georgakopoulou, E. A., Hassona, Y., 2017: The immune system: Basis of so much health and disease: Antigens and MHC. Dental Update, 44, 11, 1071—1075. DOI: 10.12968/denu.2017.44.11.1071.10.12968/denu.2017.44.11.1071Search in Google Scholar

58. Shortman, K., Heath, W. R., 2001: Immunity or tolerance? That is the question for dendritic cells. Nat. Immunol., 2, 11, 988—989. DOI: 10.1038/ni1101-988.10.1038/ni1101-98811685217Search in Google Scholar

59. Spannbauer, A., Mester-tonczar, J., Traxler, D., Kastner, N., Zlabinger, K., Hašimbegovic, E., Gyöngyösi, M., 2020: Large animal models of cell-free cardiac regeneration. Biomolecules, 10, 10, 1—19. DOI: 10.3390/biom10101392.10.3390/biom10101392760058833003617Search in Google Scholar

60. Steinman, R. M., 2012: Decisions about dendritic cells: Past, present, and future. Ann. Rev. Immunol., 30, 1—22. DOI: 10. 1146/annurev-immunol-100311-102839.10.1146/annurev-immunol-100311-10283922136168Search in Google Scholar

61. Steinman, R. M., 1991: The dendritic cell system and its role in immunogeneicity. Ann. Rev. Immunol., 9, 271—296. DOI: 10.1146/annurev.iy.09.040191.001415.10.1146/annurev.iy.09.040191.0014151910679Search in Google Scholar

62. Steinman, R. M., Cohn, Z. A., 1973: Identification of a novel cell type in peripheral lymphoid organs of mice. J. Exper. Med., 137, 1142—1162. DOI: 10.1084/jem.137.5.1142.10.1084/jem.137.5.114221392374573839Search in Google Scholar

63. Steinman, R. M., Nussenzweig, M. C., 2002: Avoiding horror autotoxicus: The importance of dendritic cells in peripheral T cell tolerance. Proc. Nat. Acad. Sci. USA, 99, 1, 351— 358. DOI: 10.1073/pnas.231606698.10.1073/pnas.23160669811756411773639Search in Google Scholar

64. Summerfield, A., McCullough, K. C., 2009: The porcine dendritic cell family. Develop. Comp. Immunol., 33, 3, 299— 309. DOI: 10.1016/j.dci.2008. in Google Scholar

65. Van Tendeloo, V. F., Van De Veldea, A., Van Driesschea, A., Coolsa, N., Anguille, S., Ladell, K., Berneman, Z. N., 2010: Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Nat. Acad. Sci. USA, 107, 31, 13824—13829. DOI: 10.1073/pnas.1008051107.10.1073/pnas.1008051107292223720631300Search in Google Scholar

66. Tizard, I., 2018: Veterinary Immunology. 10th edn., Elsevier, St. Louis, Missouri, 552 pp.Search in Google Scholar

67. Traver, D., Akashi, K., Manz, M., Merad, M., Miyamoto, T., Engleman, E. G., Weissman, I. L., 2000: Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science, 290, 2152—2154. DOI: 10.1126/science.290. 5499.2152.Search in Google Scholar

68. Weissman, I. L., 2000: Translating stem and progenitor cell biology to the clinic: Barriers and opportunities. Science, 287, 1442—1446. DOI: 10.1126/science.287.5457.1442.10.1126/science.287.5457.144210688785Search in Google Scholar

69. Wheeler, C. J., Black, K. L., 2011: Vaccines for glioblastoma and high-grade glioma. Expert Rev. Vaccines, 10, 6, 875—886. DOI: doi.org/10.1586/erv. in Google Scholar

70. Wongyanin, P., Buranapraditkul, S., Yoo, D., Thanawongnuwech, R., Roth, J. A., Suradhat, S., 2012: Role of porcine reproductive and respiratory syndrome virus nucleocapsid protein in induction of interleukin-10 and regulatory T-lymphocytes (Treg). J. General Virol., 93, 6, 1236—1246. DOI: 10.1099/vir.0.040287-0.10.1099/vir.0.040287-022422061Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo