Open Access

Individual Water Sources and their Potential Effect on Human and Animal Health in Environmentally Burdened Region


Cite

1. Ahmad, A., Haque Khan, M., Haque, M., 2018: Arsenic contamination in groundwater in Bangladesh: implications and challenges for healthcare policy. Risk Manag. Health Policy, 11, 251—261. DOI: 10.2147/RMHP.S153188.10.2147/RMHP.S153188628115530584381Search in Google Scholar

2. Baker, A., Inverarity, R., 2004: Protein-like fluorescence intensity as a possible tool for determining river water quality. Hydrol. Process, 18, 15, 2927—2945. DOI: 10.1002/hyp.5597.10.1002/hyp.5597Search in Google Scholar

3. Baker, A., Cumberland, S. A., Bradley, C., Buckley, C., Bridgeman, J., 2015: To what extent can portable fluorescence spectroscopy be used in the real-time assessment of microbial water quality ? Sci. Total Environ, 532, 14—19. DOI: 10.1016/j.scitotenv.2015.05.114.10.1016/j.scitotenv.2015.05.11426057622Search in Google Scholar

4. Baláž, P., Kúšik, D., 2008:Minerals of the Slovak Republic: Interim Report (In Slovak). The State Institute of Geology of Dionýz Štúr, Spišská Nová Ves, Bratislava, 163 pp.Search in Google Scholar

5. Barloková, D., Ilavský. J., Kunštek, M., 2012: Removal of antimony from water by coagulation. Food Environ. Safety J., 11, 10—18.Search in Google Scholar

6. Bredsdorff, L., Nielsen, E., 2015:Antimony: Evaluation of Health Hazards and Proposal of a Health Based Quality Criterion for Soil. Danish Environmental Protection Agency, Copenhagen, Denmark, 39 pp.Search in Google Scholar

7. Camper, A. K., Brastrup, K., Sandvig, A., Clement, J., Spencer, C., Capuzzi, A. J., 2003: Effect of distribution system material on bacterial regrowth. J. Am. Water Works Assoc., 95, 7, 107—121. DOI: 10.1002/j.1551-8833.2003.tb10412.x.10.1002/j.1551-8833.2003.tb10412.xSearch in Google Scholar

8. Cech, E., Michaeli, E., Krokusova, J., Ivanova, M., 2015: Contamination of Selected Components of the Environment in the Middle Spiš Region (Slovak Republic). Int. Sci. Conf. GEOBALCANICA 2015, 43—49. DOI: 10.18509/GBP.2015.06.10.18509/GBP.2015.06Search in Google Scholar

9. Chen, W., Westerhoff, P., Leenheer, A. J., Booksh, K., 2003: Fluorescence excitation—emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Tech., 37, 5701—5710. DOI: 10.1021/es034354c.10.1021/es034354c14717183Search in Google Scholar

10. Council Directive 98/83/EC of November 3, 1998, on the quality of water intended for human consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-:01998L0083-20151027.Search in Google Scholar

11. Dubayová, K., Tichá, M., Kušnír, J., Lučková, I., Rigdová, K., Gondová, T., 2008: The fluorescence contour map as “identity card” of spring waters. The use of chemical methods in protecting and promoting public health (In Slovak). Programme and Book of abstracts, 9—10 Sept., Košice, 13.Search in Google Scholar

12. Etim, E. U., 2018: Occurrence and distribution of arsenic, antimony and selenium in shallow groundwater systems of Ibadan metropolis, Southwestern Nigeria. J. Health Poll., 13, 32—41.10.5696/2156-9614-7-13.32623652730524812Search in Google Scholar

13. Filella, M., Williams, P. A., Belzile, N., 2009: Antimony in the environment: knowns and unknowns. Environ. Chem., 6, 95—105. DOI: 10.1071/EN09007.10.1071/EN09007Search in Google Scholar

14. Filella, M., 2011: Antimony interactions with heterogeneous complexants in waters, sediments and soils: A review of data obtained in bulk samples. Earth-Sci. Rev., 107, 325—341.10.1016/j.earscirev.2011.04.002Search in Google Scholar

15. Filella, M., Williams, P. A., 2012: Antimony interactions with heterogeneous complexants in waters, sediments and soils: A review of binding data for homologous compounds. Chem. Erde, 72, S4, 49—65.10.1016/j.chemer.2012.01.006Search in Google Scholar

16. Fu, Z., Wu, F., Mo, C., Liu, B., Zhu, J., Deng, Q., et al., 2011: Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China. Microchem. J., 97, 12—19.10.1016/j.microc.2010.06.004Search in Google Scholar

17. Fu, Z., Wu, F., Mo, C., Deng, Q., Meng. W., Giesy, J. P., 2016: Comparison of arsenic and antimony biogeochemical behaviour in water, soil and tailings from Xikuangshan, China. Sci. Total Environ., 539, 97—104, DOI: 10.1016/j.scitotenv.2015.08.146.10.1016/j.scitotenv.2015.08.14626356182Search in Google Scholar

18. Guo, W., Fu, Z., Wang, H., Liu, S., Wu, F., Giesy, J. P., 2018: Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms. Sci. Total Environ., 644, 1277—1285. DOI: 10.1016/j.scitotenv.2018.07.034.10.1016/j.scitotenv.2018.07.03430743840Search in Google Scholar

19. Horáková, M., 2003:Water Analytics (In Czech), 1st edn., VŠCHT, Prague, 116–121.Search in Google Scholar

20. Hrušková, T., 2014: The most important pollutants of Eastern Slovakia waters. J. Microbiol. Biotechnol. Food Sci., 4, 112—116. DOI: 10.15414/jmbfs.2014.4.2.112-116.10.15414/jmbfs.2014.4.2.112-116Search in Google Scholar

21. Hu, X., He, M., Li, S., Guo, X., 2017: The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. J. Geochem. Explor., 176, 76—84. DOI: http://dx.doi.org/10.1016/j.gexplo.2016.01.009.10.1016/j.gexplo.2016.01.009Search in Google Scholar

22. Hucko, P., 2012: Loading the Bukovec water-supply reservoir and the catchment area with arsenic and antimony. In Water Biology, Prague, CZ. Available online at http://archiv.eko-monitor.cz/sites/default/files/filepath/prezentace/21_hucko.pdf. Accessed on July 10, 2015.Search in Google Scholar

23. Huy, T. B., Tuyet-Hanh, T. T., Johnston, R., Nguyen-Viet, H., 2014: Assessing health risk due to exposure to arsenic in drinking water in Hanam province, Vietnam. Int. J. Environ. Res. Public Health, 11, 7575—7591. DOI: 10.3390/ijerph110807575.10.3390/ijerph110807575414381925062276Search in Google Scholar

24. Ilavský, J., Barloková, D., Munka, K., 2014: Antimony removal from water by adsorption to iron-based sorption materials. Water, Air, Soil Poll., 226, 1, 2238—2238. DOI: 10.1007/s11270-014-2238-910.1007/s11270-014-2238-9Search in Google Scholar

25. Kelepertsis, A., Alexakis, D., Skordas, K., 2006: Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ. Geol., 50, 76—84. DOI: 10.1007/s00254-006-0188-2.10.1007/s00254-006-0188-2Search in Google Scholar

26. Khan, M. W., Khalid, M., Ullah, H., Rehman, H. U., Ayaz, Y., Ullah, F., et al., 2017: Detection of arsenic (As), antimony (Sb) and bacterial contamination in drinking water. Biol. Forum—Int. J., 9, 133—138.Search in Google Scholar

27. Lešková, A., Molnárová, M., Fargašová, A., 2012: Biochemical view on the intake, metabolism and toxic effects of arsenic compounds on plants. Chem. Listy, 106, 1110—1115.Search in Google Scholar

28. Li, J., Wei, Y., Zhao, L., Zhang, J., Shangguan, Y., Li, F., Hou, H., 2014: Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotox. Environ. Safe., 110, 308—315. DOI: 10.1016/j.ecoenv.2014.09.009.10.1016/j.ecoenv.2014.09.00925437466Search in Google Scholar

29. Li, J., Zheng, B. H., He, Y., Zhou, Y., Chen, X., Ruan, S., et al., 2018: Antimony contamination, consequences and removal techniques: A review. Ecotox. Environ. Safe., 156, 125—134. DOI: 10.1016/j.ecoenv.2018.03.024.10.1016/j.ecoenv.2018.03.02429549735Search in Google Scholar

30. Lieskovská, Z., Lényiová, P., et al., (Ed.), 2018:Report on the State of the Environment in SR in 2018 (In Slovak), MŽP and SAŽP, Slovakia, 222 pp.Search in Google Scholar

31. Liu, F., Le, X. C., McKnight-Whitford, A., Xia, Z., Wu, F., Elswick, E., et al., 2010: Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Environ. Geochem. Health, 32, 5, 401—413. DOI: 10.1007/s10653-010-9284-z.10.1007/s10653-010-9284-z20101438Search in Google Scholar

32. Matilainen, A. M., Gjessing, E. T., Lahtinen, Hed, L., Bhatnagar, A., Sillanpää, M., 2011: An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83, 11, 1431—1442. DOI: 10.1016/j.chemosphere.2011.01.018.10.1016/j.chemosphere.2011.01.01821316073Search in Google Scholar

33. Murphy, K. R., Stedmon, C. A., Graeber, D., Bro, R., 2013: Fluorescence spectroscopy and multi-way techniques. Parafac. Anal. Methods, 5, 6557—6566.10.1039/c3ay41160eSearch in Google Scholar

34. Rapant, S., Dietzová, Z., Cicmanová, S., 2006: Environmental and health risk assessment in abandoned mining area, Zlatá Idka, Slovakia. Environ. Geol., 51, 3, 387—397. DOI: 10.1007/s00254-006-0334-x.10.1007/s00254-006-0334-xSearch in Google Scholar

35. Rapant, S., Cvečková, V., Dietzová, Z., Fajčíková, K., Letkovičová, M., Sedláková, D., 2011a: The impact of geological environment on health status of residents of the Slovak Republic. Mineralica Slovaca, 43, 437—448.Search in Google Scholar

36. Rapant, S., Fajčíková, K., Khun, M., Cvečková, V., 2011b: Application of health risk assessment method for geological environment at national and regional scales. Environ. Earth Sci., 64, 513—521. DOI: 10.1007/s12665-010-0875-x.10.1007/s12665-010-0875-xSearch in Google Scholar

37. Regulation of the government of the SR No. 269/2010 Coll. which stipulates criteria for achieving good water balance. Effective of January 1, 2011.Search in Google Scholar

38. Regulation of the government of the SR No. 496/2010 Coll. amending and supplementing the SR governmental regulation No. 354/2006 Coll. which determines requirements on water intended for human consumption and control of water intended for human consumption. Effective of January 1, 2011.Search in Google Scholar

39. Šestinová, O., Findoráková, L., Hančuľák, J., Šestinová, D., 2015: Study of metal mobility and phytotoxicity in bottom sediments that have been influenced by former mining activities in Eastern Slovakia. Environ. Earth Sci., 74, 6017—6025. DOI: 10.1007/s12665-015-4625-y.10.1007/s12665-015-4625-ySearch in Google Scholar

40. STN EN ISO 8467, 1993: Water quality. Determination of permanganate index (In Slovak). Publication date 1993-06.Search in Google Scholar

41. STN EN ISO 6222, 1999: Water quality. Enumeration of culturable micro-organisms. Colony count inoculation in a nutrient agar culture medium (In Slovak). Publication date 1999-05.Search in Google Scholar

42. STN EN ISO 7899-2, 2000: Water quality. Detection and enumeration of intestinal enterococci. Part 2: Membrane filtration method (In Slovak). Publication date 2000-04.Search in Google Scholar

43. STN EN ISO 9297, 2000: Water quality. Determination of chloride. Silver nitrate titration with chromate indicator (Mohr’s method) (In Slovak). Publication date 2000-08.Search in Google Scholar

44. STN EN ISO 15 586, 2004: Water quality, determination of trace elements using atomic absorption spectrometry with graphite furnace (In Slovak). Publication date 2004-10.Search in Google Scholar

45. STN EN ISO 10523, 2012: Water quality—Determination of pH (In Slovak). Publication date 2012-06.Search in Google Scholar

46. STN EN ISO 9308-1, 2015: Water quality. Enumeration of Escherichia coli and coliform bacteria. Part 1: Membrane filtration method for waters with low bacterial background flora (In Slovak). Publication date 2015-10.Search in Google Scholar

47. Sundar, S., Chakravarty, J., 2010: Review. Antimony toxicity. Int. J. Environ. Res. Public Health, 7, 4267—4277. DOI: 10. 3390/ijerph7124267.10.3390/ijerph7124267303705321318007Search in Google Scholar

48. Ursínyová, M., 2011:Risk Assessment of Arsenic Intake from Food and Water in the SR (In Slovak). Ministry of Agriculture and Rural Development. Available at http://www.mpsr.sk/sk/index.php?navID=525&navID2=525&sID=111&id=512361s.Search in Google Scholar

49. US Environmental Protection Agency (USEPA) 816-F-09-0004, 2009:National Primary Drinking Water Standards and National Secondary Drinking Water Standards. EPA’s Office of Water, Washington, D. C. Available at https://safewater.zendesk.com/hc/en-us/articles/212077917-4-What-are-EPA-s-drinking-water-regulations-for-antimony-. Accessed in April, 2017.Search in Google Scholar

50. Vaclavikova, M., Gallios, G. P., Hredzak, S., Jakabsky, S., 2008: Removal of arsenic from water streams: an overview of available techniques. Clean Technol. Environ. Policy, 10, 89—95. DOI: 10.1007/s10098-007-0098-3.10.1007/s10098-007-0098-3Search in Google Scholar

51. Vojteková, V., Poperníková, Z., Ashraf, M., Abusenaina, M., 2014: Antimony in various environment elements (In Slovak). Chem. Listy, 108, 135—140.Search in Google Scholar

52. WHO, 1996:World Health Organization and International Programme on Chemical Safety. Guidelines for Drinking-Water Quality. Vol. 2, Health Criteria and Other Supporting Information, 2nd edn., Available at https://apps.who.int/iris/handle/10665/38551.Search in Google Scholar

53. WHO, 2008:Guidelines for Drinking-water Quality (3rd. ed.). Vol. 1, Recommendations, 3rd edn., Geneva, WEB version, 515 pp.Search in Google Scholar

54. Wilson, S. C., Lockwood, P. V., Ashley, P. M., Tighe, M., 2010: The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Poll., 158, 1169—1181.10.1016/j.envpol.2009.10.04519914753Search in Google Scholar

55. Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., Liao, H., 2011: Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci. Total Environ., 409, 3344—3351.10.1016/j.scitotenv.2011.05.03321684578Search in Google Scholar

56. Yang, H., He, M., Wang, X., 2015: Concentration and speciation of antimony and arsenic in soil profiles around the world’s largest antimony metallurgical area in China. Environ. Geochem. Health, 37, 21–33. DOI: 10.1007/s10653-014-9627-2.10.1007/s10653-014-9627-224969304Search in Google Scholar

57. Zhang, H., Cui, K., Guo, Z., Li, X., Chen, J., Qi, Z., Xu, S., 2020: Spatiotemporal variations of spectral characteristics of dissolved organic matter in river flowing into a key drinking water source in China. Sci. Total Environ., 700, 134360. DOI: 10.1016/j.scitotenv.2019.134360.10.1016/j.scitotenv.2019.13436031629259Search in Google Scholar

eISSN:
2453-7837
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine