1. bookVolume 63 (2019): Issue 2 (June 2019)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Preliminary Study of Pesticide Mospilan Effect on the GSTP1 Gene Methylation in Bovine Lymphocytes

Published Online: 09 Jul 2019
Volume & Issue: Volume 63 (2019) - Issue 2 (June 2019)
Page range: 1 - 7
Received: 05 Apr 2019
Accepted: 24 May 2019
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The epigenetic mechanisms represent a dynamic, reversible and heritable manner modulating gene expression during the life cycle of an animal organism. They generate the specific epigenetic marks which constitute so-called epigenome. One of the most studied epigenetic mechanisms/marks is DNA methylation which is, similarly as the whole epigenome, susceptible to environmental and nutritional influences. The aberrations of the DNA methylation profile may alter gene expression leading to pathologic consequences. Pesticides along with their pest-reducing effects may also negatively affect non-target organisms. In our preliminary study, we investigated an effect of the pesticide Mospilan on the DNA methylation of the bovine GSTP1 gene which plays an important role in the cell detoxification processes. The specific primers for the GSTP1 Methylation-specific PCR (MSP) analysis were proposed and tested with the DNA from the Mospilan-treated bovine lymphocytes. It seems that the pesticide with the concentration of 100 µg.ml−1 did not induce DNA methylation changes in GSTP1 gene in bovine lymphocytes.

Keywords

1. Bernstein, B. E., Meissner, A., Lander, E. S., 2007: The mammalian epigenome. Cell, 128, 4, 669‒681. DOI: 10.1016/j.cell. 2007.01.033.10.1016/j.cell.2007.01.033Open DOISearch in Google Scholar

2. Choi, S.-W., Friso, S., 2010: Epigenetics: a new bridge between nutrition and health. Adv. Nutr., 1, 8—16. DOI:10.3945/an.110.1004.10.3945/.110.1004Open DOISearch in Google Scholar

3. Collotta, M., Bertazzi, P. A., Bollati, V., 2013: Epigenetics and pesticides. Toxicology, 307, 35—41. DOI: 10.1016/j.tox. 2013.01.017.10.1016/j.tox.2013.01.017Open DOISearch in Google Scholar

4. Davidović, R. S., Božović, A. M., Mandušić, V. Lj., Krajnović, M. M., 2014: Methylation-specific PCR: four steps in primer design. Cent. Eur. J. Biol., 9, 12, 1127—1139. DOI: 10.2478/s11535-014-0324-z.10.2478/s11535-014-0324-zOpen DOISearch in Google Scholar

5. Di Pietro, G., Magno, L. A. V., Rios-Santos, F., 2010: Glutathione S-transferases: an overview in cancer research. Expert Opin. Drug Metab. Toxicol., 6, 153—170. DOI: 10.1517/17425250903427980.10.1517/17425250903427980Open DOISearch in Google Scholar

6. Goddard, M. E., Whitelaw, E., 2014: The use of epigenetic phenomena for the improvement of sheep and cattle. Front. Genet., 5, 247. DOI: 10.3389/fgene.2014.00247.10.3389/fgene.2014.00247Open DOISearch in Google Scholar

7. Gurioli, G., Martignano, F., Salvi, S., Costantini, M., Gunelli, R., Casadio, V., 2018: GSTP1 methylation in cancer: a liquid biopsy biomarker ? Clin. Chem. Lab. Med., 56, 5, 702—717. DOI: 10.1515/cclm-2017-0703.10.1515/cclm-2017-0703Open DOISearch in Google Scholar

8. Hernando, N., Martin-Alonso, J. M., Ghosh, S., Coca-Prados, M., 1992: Isolation of a cDNA encoding a glutathione s-transferase (GST) class-Pi from the bovine ocular ciliary epithelium. Exp. Eye Res., 55, 711—718.DOI: 10.1016/0014-4835(92)90175-R.10.1016/0014-4835(92)90175-RSearch in Google Scholar

9. Jang, H., Serra, C., 2014: Nutrition, epigenetics, and diseases. Clin. Nutr. Res., 3, 1, 1—8. DOI:10.7762/cnr.2014.3.1.1.10.7762/cnr.2014.3.1.1Open DOISearch in Google Scholar

10. Kwiatkowska, M., Reszka, E., Wozniak, K., Jabłonska, E., Michałowicz, J., Bukowska, B., 2017: DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol., 105, 93—98. DOI:10.1016/j.fct.2017.03.051.10.1016/j.fct.2017.03.051Search in Google Scholar

11. Li, L. C., Dahiya, R., 2002: MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18, 11, 1427—1431. DOI: 10.1093/bioinformatics/18.11.1427.10.1093/bioinformatics/18.11.1427Open DOISearch in Google Scholar

12. Laborde, E., 2010: Glutathione transferases as mediators of signalling pathways involved in cell proliferation and cell death. Cell Death Differ., 17, 9, 1373—1380. DOI: 10.1038/cdd.2010.80.10.1038/cdd.2010.80Open DOISearch in Google Scholar

13. Manikkam, M., Tracey, R., Guerrero-Bosagna, C., Skinner, M. K., 2012: Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod. Toxicol., 34, 4, 708—719. DOI: 10.1016/j.reprotox.2012.08.010.10.1016/j.reprotox.2012.08.010Open DOISearch in Google Scholar

14. Pallotta, M. M., Barbato, V., Pinton, A., Acloque, H., Gualtieri, R., Talevi, R. et al., 2019:In vitro exposure to CPF affects bovine sperm epigenetic gene methylation pattern and the ability of sperm to support fertilization and embryo development. Environ. Mol. Mutagen., 60, 1, 85—95. DOI: 10.1002/em.22242.10.1002/em.22242Open DOISearch in Google Scholar

15. Pang, Y-W., Jiang, X-L., Wang, Y-Ch., Wang, Y-Y., Hao, H-S., Zhao, S-J. et al., 2018: Melatonin protects against paraquat-induced damage during in vitro maturation of bovine oocytes. J. Pineal. Res., 66, e12532. DOI: 10.1111/jpi.12532.10.1111/jpi.12532Open DOISearch in Google Scholar

16. Qiao, Ch-Y., Li, F., Teng, Y., Zhao, J., Hu, N., Fan, Y-Ch. et al., 2018: Aberrant GSTP1 promoter methylation predicts poor prognosis of acute-on-chronic hepatitis B pre-liver failure. Clin. Exp. Med., 18, 51—62. DOI: 10.1007/s10238-017-0466-1.10.1007/s10238-017-0466-1Open DOISearch in Google Scholar

17. Schwarzbacherová, V., Wnuk, M., Lewinska, A., Potocki, L., Zebrowski, J., Koziorowski, M. et al., 2016: Evaluation of cytotoxic and genotoxic activity of fungicide formulation Tango® Super in bovine lymphocytes. Environ. Pollut., 1—9. http: DOI: 10.1016/j.envpol.2016.09.057.10.1016/j.envpol.2016.09.057Open DOISearch in Google Scholar

18. van der Plaat, D. A., de Jong, K., de Vries, M., van Diemen, C. C., Nedeljković, I., Amin, N. et al., 2018: Occupational exposure to pesticides is associated with differential DNA methylation. Occup. Environ. Med., 75, 6, 427—435. DOI: 10. 1136/oemed-2017-104787.10.1136/oemed-2017-104787Open DOISearch in Google Scholar

19. Xing, H., Wang, C., Wu, H., Chen, D., Li, S., Xu, S., 2015: Effects of atrazine and chlorpyriphos on DNA methylation in the brain and gonad of the common carp. Comp. Biochem. Phys. C., 168, 11—19. DOI: 10.1016/j.cbpc.2014.11.002.10.1016/j.cbpc.2014.11.002Open DOISearch in Google Scholar

20. Yu, X., Zhao, B., Su, Y., Zhang, Y., Chen, J., Wu, W. et al., 2018: Association of prenatal organochlorine pesticide dichloro-diphenyl-trichloroethane exposure with foetal genome-wide DNA methylation. Life Sci., 200, 81—86. DOI: 10.1016/j.lfs.2018.03.030.10.1016/j.lfs.2018.03.030Open DOISearch in Google Scholar

21. Zhu, X., Li, D., Du, Y., He, W., Lu, Y., 2018: DNA hypermethylation-mediated downregulation of antioxidant genes contributes to the early onset of cataracts in highly myopic eyes. Redox. Biol., 19, 179—189. DOI: 10.1016/j.redox.2018.08.012.10.1016/j.redox.2018.08.012Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo