This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Chwil S. A study on the effects of foliar feeding under different soil fertilization conditions on the yield structure and quality of common oat (Avena sativa L.). Acta Agrobot 2014, 67(4), 135–144. https://doi.org/10.5586/aa.2014.017ChwilSA study on the effects of foliar feeding under different soil fertilization conditions on the yield structure and quality of common oat (Avena sativa L.)Acta Agrobot2014674135144https://doi.org/10.5586/aa.2014.017Search in Google Scholar
Wafula EN, Muhonja CN, Kuja JO, Owaga EE, Makonde HM, Mathara JM, Kimani VW. Lactic Acid Bacteria from African Fermented Cereal-Based Products: Potential Biological Control Agents for Mycotoxins in Kenya. J Toxicol 2022, 2397767, 1–17. https://doi.org/10.1155/2022/2397767WafulaENMuhonjaCNKujaJOOwagaEEMakondeHMMatharaJMKimaniVWLactic Acid Bacteria from African Fermented Cereal-Based Products: Potential Biological Control Agents for Mycotoxins in KenyaJ Toxicol20222397767117https://doi.org/10.1155/2022/2397767Search in Google Scholar
Hammad SAR, Ali OAM. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann. Agric. Sci 2014, 201459(1), 133–145. https://doi.org/10.1016/j.aoas.2014.06.018HammadSARAliOAMPhysiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extractAnn. Agric. Sci20142014591133145https://doi.org/10.1016/j.aoas.2014.06.018Search in Google Scholar
United Nations Food and Agriculture Organization Report. Available online: http://data.un.org/ (accessed on 2023-05-05).United Nations Food and Agriculture Organization ReportAvailable online: http://data.un.org/ (accessed on 2023-05-05).Search in Google Scholar
Jankowski KJ, Hulanicki PS, Sokólski M, Hulanicki P, Dubis B. Yield and quality of winter wheat (Triticum aestivum L.) in response to different systems of foliar fertilization. J. Elem 2016, 21(3), 715–728. https://doi.org/10.5601/jelem.2015.20.4.1036JankowskiKJHulanickiPSSokólskiMHulanickiPDubisBYield and quality of winter wheat (Triticum aestivum L.) in response to different systems of foliar fertilizationJ. Elem2016213715728https://doi.org/10.5601/jelem.2015.20.4.1036Search in Google Scholar
Production of agricultural and horticultural crops in 2021. Central Statistical Office. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/produkcja-upraw-rolnych-i-ogrodniczych-w-2021-roku,9,20.html (accessed on 2023-05-05).Production of agricultural and horticultural crops in 2021Central Statistical OfficeAvailable online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/produkcja-upraw-rolnych-i-ogrodniczych-w-2021-roku,9,20.html (accessed on 2023-05-05).Search in Google Scholar
Cristiano G, Pallozzi E, Conversa G, Tufarelli V, De Lucia B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.). Front. Plant Sci 2018, 9, 861, 1–12. https://doi.org/10.3389/fpls.2018.00861CristianoGPallozziEConversaGTufarelliVDe LuciaBEffects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.)Front. Plant Sci20189861112https://doi.org/10.3389/fpls.2018.00861Search in Google Scholar
EBIC 2018. Available online: http://www.biostimulators.eu/ (accessed on 10.10.2019).EBIC2018Available online: http://www.biostimulators.eu/ (accessed on 10.10.2019).Search in Google Scholar
Wilson HT, Amirkhani M, Taylor AG. Evaluation of Gelatin as a Biostimulant Seed Treatment to Improve Plant Performance. Front. Plant Sci 2018, 9, 1–11. https://doi.org/10.3389/fpls.2018.01006WilsonHTAmirkhaniMTaylorAGEvaluation of Gelatin as a Biostimulant Seed Treatment to Improve Plant PerformanceFront. Plant Sci20189111https://doi.org/10.3389/fpls.2018.01006Search in Google Scholar
Du Jardin P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hort. 2015 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021Du JardinPPlant biostimulants: Definition, concept, main categories and regulationSci. Hort.2015196314https://doi.org/10.1016/j.scienta.2015.09.021Search in Google Scholar
Radkowski A, Radkowska I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A. 2013 20(10), 1205–1211. https://doi.org/10.2428/ecea.2013.20(10)110RadkowskiARadkowskaIEffect of foliar application of growth biostimulant on quality and nutritive value of meadow swardEcol. Chem. Eng. A.2013201012051211https://doi.org/10.2428/ecea.2013.20(10)110Search in Google Scholar
Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules 2018, 23(2), 470. https://doi.org/10.3390/molecules23020470PopkoM.MichalakI.WilkR.GramzaM.ChojnackaK.GóreckiHEffect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter WheatMolecules2018232470https://doi.org/10.3390/molecules23020470Search in Google Scholar
Popko M., Wilk R., Górecki H. New amino acid biostimulators based on protein hydrolysate of keratin. Przem. Chem 2014, 93, 1012–1015. https://doi.org/10.12916/przemchem.2014.1012PopkoM.WilkR.GóreckiH.New amino acid biostimulators based on protein hydrolysate of keratinPrzem. Chem.20149310121015https://doi.org/10.12916/przemchem.2014.1012Search in Google Scholar
Kucińska JK, Magnucka EG, Oksińska MP, Pietr SJ. Bioefficacy of Hen Feather Keratin Hydrolysate and Compost on Vegetable Plant Growth. Compost Sci. Utiliz 2014, 22, 179–187. https://doi.org/10.1080/1065657X.2014.918866KucińskaJKMagnuckaEGOksińskaMPPietrSJBioefficacy of Hen Feather Keratin Hydrolysate and Compost on Vegetable Plant GrowthCompost Sci. Utiliz201422179187https://doi.org/10.1080/1065657X.2014.918866Search in Google Scholar
Skwarek M, Nawrocka J, Lasoń-Rydel M., Ławińska K. Diversity of Plant Biostimulants in Plant Growth Promotion and Stress Protection in Crop and Fibrous Plants. Fibres Text. East 2020, 28, 4(142), 34–41. https://doi.org/10.5604/01.3001.0014.0931SkwarekMNawrockaJLasoń-RydelM.ŁawińskaKDiversity of Plant Biostimulants in Plant Growth Promotion and Stress Protection in Crop and Fibrous PlantsFibres Text. East2020284(142)3441https://doi.org/10.5604/01.3001.0014.0931Search in Google Scholar
Timorshina S, Popova E, Osmolovskiy A. Sustainable applications of animal waste proteins. Polymers 2022, 14 (8), 1601. https://doi.org/10.3390/polym14081601TimorshinaSPopovaEOsmolovskiyASustainable applications of animal waste proteinsPolymers20221481601https://doi.org/10.3390/polym14081601Search in Google Scholar
Gendaszewska D, Lasoń-Rydel M, Ławińska K, Grzesiak E, Pipiak P. Characteristics of collagen preparations from leather wastes by the high pressure liquid chromatography method. Fibres Text. East 2021, 29(5-149), 75–79. https://doi.org/10.5604/01.3001.0014.9308GendaszewskaDLasoń-RydelMŁawińskaKGrzesiakEPipiakPCharacteristics of collagen preparations from leather wastes by the high pressure liquid chromatography methodFibres Text. East2021295-1497579https://doi.org/10.5604/01.3001.0014.9308Search in Google Scholar
Ławińska K, Lasoń-Rydel M, Gendaszewska D, Grzesiak E, Sieczyńska K, Gaidau C, Epure DG, Obraniak A. Coating of Seeds with Collagen Hydrolysates from Leather Waste, Fibres Text. East. Eur 2019, 27, 4(136), 59–64. https://doi.org/10.5604/01.3001.0013.1819ŁawińskaKLasoń-RydelMGendaszewskaDGrzesiakESieczyńskaKGaidauCEpureDGObraniakACoating of Seeds with Collagen Hydrolysates from Leather Waste, Fibres TextEast. Eur2019274(136)5964https://doi.org/10.5604/01.3001.0013.1819Search in Google Scholar
Ekşi HS, Sönmez I. Effects of amino acid applications on yield, growth and mineral nutrition of greenhouse tomato. J. Elem 2022, 27(3), 545–557. https://doi.org/10.5601/jelem.2022.27.1.2258EkşiHSSönmezIEffects of amino acid applications on yield, growth and mineral nutrition of greenhouse tomatoJ. Elem2022273545557https://doi.org/10.5601/jelem.2022.27.1.2258Search in Google Scholar
Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y, Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci 2017, 8, 1–14. https://doi.org/10.3389/fpls.2017.02202CollaGHoaglandLRuzziMCardarelliMBoniniPCanaguierRRouphaelYBiostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and MicrobiomeFront. Plant Sci20178114https://doi.org/10.3389/fpls.2017.02202Search in Google Scholar
Ertani A, Pizzeghelio D, Altissimo A, Nardi S. Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. J Plant Nutr Soil Sci 2013, 176(2), 287–296. https://doi.org/10.1002/jpln.201200020ErtaniAPizzeghelioDAltissimoANardiSUse of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maizeJ Plant Nutr Soil Sci20131762287296https://doi.org/10.1002/jpln.201200020Search in Google Scholar
Hussein MM, Balbaa LK, Gaballah MS. Salicylic Acid and Salinity Effects on Growth of Maize Plants. Res. J. Agric. Biol. Sci 2017, 3(4), 321–28.HusseinMMBalbaaLKGaballahMSSalicylic Acid and Salinity Effects on Growth of Maize PlantsRes. J. Agric. Biol. Sci20173432128Search in Google Scholar
Woznica Z, Idziak R, Sawinska Z, Sobiech Ł. Effect of salicylic acid on growth and grain yield of winter wheat. Przem. Chem. 2014, 93/4, 510–513. https://doi.org/10.12916/przemchem.2014.510WoznicaZIdziakRSawinskaZSobiechŁEffect of salicylic acid on growth and grain yield of winter wheatPrzem. Chem.2014934510513https://doi.org/10.12916/przemchem.2014.510Search in Google Scholar
Borkowski J, Felczyńska A, Dyki B. Effect of calcium nitrate, Biochicol 020 PC and Tytanit on the healthiness of chinese cabbage, the yield, the content of fenolic coumpounds and calcium. Polish Chitin Soc. Monograph 2007, 12, 225–229.BorkowskiJFelczyńskaADykiBEffect of calcium nitrate, Biochicol 020 PC and Tytanit on the healthiness of chinese cabbage, the yield, the content of fenolic coumpounds and calciumPolish Chitin Soc. Monograph200712225229Search in Google Scholar
Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci 2017, 8, 597. https://doi.org/10.3389/fpls.2017.00597.LyuSWeiXChenJWangCWangXPanDTitanium as a Beneficial Element for Crop ProductionFront. Plant Sci20178597https://doi.org/10.3389/fpls.2017.00597.Search in Google Scholar
Drzewiecki S., Pietrya J. The effect of combined use of Terpal C 460 SL growth regulator with foliar fertilizers on the quality characteristics of winter wheat grain. Prog Plant Prot 2003, 43(2), 595–597.DrzewieckiS.PietryaJ.The effect of combined use of Terpal C 460 SL growth regulator with foliar fertilizers on the quality characteristics of winter wheat grainProg Plant Prot2003432595597Search in Google Scholar
Kocoń A. Efficiency of nitrogen utilization from urea (15N) applied to soil or leaves by winter wheat and faba bean plants. Acta Agroph 2003, 85, 55–63.KocońAEfficiency of nitrogen utilization from urea (15N) applied to soil or leaves by winter wheat and faba bean plantsActa Agroph2003855563Search in Google Scholar
Hoytova D. A review of foliar fertilization of some vegetables crops. Ann Re Res Biol 2013, 3(4), 455–465.HoytovaDA review of foliar fertilization of some vegetables cropsAnn Re Res Biol201334455465Search in Google Scholar
Jaskulski D. Comparison of the effect of foliar application of fertilizers on the production and economic effects of cultivating some field crops. Fragm Agron 2007, 1(79) 106–112.JaskulskiDComparison of the effect of foliar application of fertilizers on the production and economic effects of cultivating some field cropsFragm Agron2007179106112Search in Google Scholar
Szewczuk C, Michałojć Z. Practical aspects of foliar feeding of plants. Acta Agroph 2003, 85, 19–29.SzewczukCMichałojćZPractical aspects of foliar feeding of plantsActa Agroph2003851929Search in Google Scholar
Gendaszewska D, Miśkiewicz K, Wieczorek D. Application of selected biostimulants in agriculture. In D. Gendaszewska, K. Miśkiewicz, & D. Wieczorek (Eds.), The use of plants in cosmetology, medicine, and pharmacy (Vol. 3, p. 214). TYGIEL Scientific Publishing House 2023.GendaszewskaDMiśkiewiczKWieczorekDApplication of selected biostimulants in agricultureInGendaszewskaD.MiśkiewiczK.WieczorekD.(Eds.),The use of plants in cosmetology, medicine, and pharmacy3214TYGIEL Scientific Publishing House2023Search in Google Scholar
Gaidau C, Epure D-G, Enascuta CE, Carsote C, Sendrea C, Proietti N, Gu H. Wool keratin total solubilisation for recovery and reintegration - An ecological approach. J Clean Prod 2019, 236, 117586. doi:10.1016/j.jclepro.2019.07.061GaidauCEpureD-GEnascutaCECarsoteCSendreaCProiettiNGuHWool keratin total solubilisation for recovery and reintegration - An ecological approachJ Clean Prod201923611758610.1016/j.jclepro.2019.07.061Open DOISearch in Google Scholar
Mo Y, Gong D, Liang G, Han R. Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post-harvest storage. J. Sci. Food Agric 2008, 88, 2693–2699. https://doi.org/10.1002/jsfa.3395MoYGongDLiangGHanREnhanced preservation effects of sugar apple fruits by salicylic acid treatment during post-harvest storageJ. Sci. Food Agric20088826932699https://doi.org/10.1002/jsfa.3395Search in Google Scholar
Jajor E, Zamojska J, Dworzańska D, Horoszkiewicz-Janka J, Danielewicz J, Węgorek P, Korbas M, Ciecierski W, Bocianowski J, Wilk R. Yield, volume, quality, and reduction of biotic stress influenced by titanium application in oilseed rape, winter wheat, and maize cultivations. Open Chemistry 2021, 19(1), 1089–1095. https://doi.org/10.1515/chem-2021-0074JajorEZamojskaJDworzańskaDHoroszkiewicz-JankaJDanielewiczJWęgorekPKorbasMCiecierskiWBocianowskiJWilkRYield, volume, quality, and reduction of biotic stress influenced by titanium application in oilseed rape, winter wheat, and maize cultivationsOpen Chemistry202119110891095https://doi.org/10.1515/chem-2021-0074Search in Google Scholar
Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol 2007, 164 (6), 728–736. https://doi.org/10.1016/j.jplph.2005.12.009GunesAInalAAlpaslanMEraslanFBagciEGCicekNSalicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinityJ. Plant Physiol20071646728736https://doi.org/10.1016/j.jplph.2005.12.009Search in Google Scholar
Yildirim E, Turan M, Guvenc I. Effect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown Under Salt Stress. J. Plant Nutr 2008, 31(3), 593–612. https://doi.org/10.1080/01904160801895118YildirimETuranMGuvencIEffect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown Under Salt StressJ. Plant Nutr2008313593612https://doi.org/10.1080/01904160801895118Search in Google Scholar
Korkmaz A. Inclusion of Acetyl Salicylic Acid and Methyl Jasmonate into the Priming Solution Improves Low-temperature Germination and Emergence of Sweet Pepper. HortSci 2005, 40, 197–200. https://doi.org/10.21273/HORTSCI.40.1.197KorkmazAInclusion of Acetyl Salicylic Acid and Methyl Jasmonate into the Priming Solution Improves Low-temperature Germination and Emergence of Sweet PepperHortSci200540197200https://doi.org/10.21273/HORTSCI.40.1.197Search in Google Scholar
Khan W, Prithiviraj B, Smith DL. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol 2003, 160, 485–492. https://doi.org/10.1078/0176-1617-00865KhanWPrithivirajBSmithDLPhotosynthetic responses of corn and soybean to foliar application of salicylatesJ. Plant Physiol2003160485492https://doi.org/10.1078/0176-1617-00865Search in Google Scholar
Wang W, Wang X, Huang M, Cai J, Zhou Q, Dai T, Jiang D. Alleviation of Field Low-Temperature Stress in Winter Wheat by Exogenous Application of Salicylic Acid. J Plant Growth Regul 2021, 40, 811–823. https://doi.org/10.1007/s00344-020-10144-xWangWWangXHuangMCaiJZhouQDaiTJiangDAlleviation of Field Low-Temperature Stress in Winter Wheat by Exogenous Application of Salicylic AcidJ Plant Growth Regul202140811823https://doi.org/10.1007/s00344-020-10144-xSearch in Google Scholar
Kareem F, Rihan H, Fuller MP. The Effect of Exogenous Applications of Salicylic Acid on Drought Tolerance and Up-Regulation of the Drought Response Regulon of Iraqi Wheat. J. Crop Sci. Biotechnol 2019, 22, 37–45. https://doi.org/10.1007/s12892-017-0180-0KareemFRihanHFullerMPThe Effect of Exogenous Applications of Salicylic Acid on Drought Tolerance and Up-Regulation of the Drought Response Regulon of Iraqi WheatJ. Crop Sci. Biotechnol2019223745https://doi.org/10.1007/s12892-017-0180-0Search in Google Scholar
Kováčik P, Wiśniowska-Kielian B, Smoleń S. Effect of application of Mg-Tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grain. J. Elem 2018, 23(2), 697–708. https://doi.org/10.5601/jelem.2017.22.2.1461KováčikPWiśniowska-KielianBSmoleńSEffect of application of Mg-Tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grainJ. Elem2018232697708https://doi.org/10.5601/jelem.2017.22.2.1461Search in Google Scholar
Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguiere R, Rouphaelf Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic 2015, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037CollaGNardiSCardarelliMErtaniALuciniLCanaguiereRRouphaelfYProtein hydrolysates as biostimulants in horticultureSci. Hortic20151962838https://doi.org/10.1016/j.scienta.2015.08.037Search in Google Scholar
Mironenko GA, Zagorskii IA, Bystrova NA, Kochetkov KA. The Effect of a Biostimulant Based on a Protein Hydrolysate of Rainbow Trout (Oncorhynchus mykiss) on the Growth and Yield of Wheat (Triticum aestivum L.). Molecules 2022, 27, 6663. https://doi.org/10.3390/molecules27196663MironenkoGAZagorskiiIABystrovaNAKochetkovKAThe Effect of a Biostimulant Based on a Protein Hydrolysate of Rainbow Trout (Oncorhynchus mykiss) on the Growth and Yield of Wheat (Triticum aestivum L.)Molecules2022276663https://doi.org/10.3390/molecules27196663Search in Google Scholar
Laurent EA, Ahmed N, Durieu C, Grieu P, Lamaze T. Marine and fungal biostimulants improve grain yield, nitrogen absorption and allocation in durum wheat plants. J. Agric. Sci 2020, 158, 279–287. https://doi.org/10.1017/S0021859620000660LaurentEAAhmedNDurieuCGrieuPLamazeTMarine and fungal biostimulants improve grain yield, nitrogen absorption and allocation in durum wheat plantsJ. Agric. Sci2020158279287https://doi.org/10.1017/S0021859620000660Search in Google Scholar
Gorissen SH, Horstman A.M, Franssen R, Crombag JJ, Langer H, Bierau J. Respondek F., Van Loon, L. J. Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a randomized trial. The Journal of nutrition 2016, 146, 9, 1651–1659.GorissenSHHorstmanA.MFranssenRCrombagJJLangerHBierauJRespondekF.Van LoonL. J.Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a randomized trialThe Journal of nutrition2016146916511659Search in Google Scholar
Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implications of arginine metabolism in plants. Frontiers in plant science 2015, 6, 534.WinterGToddCDTrovatoMForlaniGFunckDPhysiological implications of arginine metabolism in plantsFrontiers in plant science20156534Search in Google Scholar
Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell and Environment 2013, 36, 2085–2103.ZeierJNew insights into the regulation of plant immunity by amino acid metabolic pathwaysPlant Cell and Environment20133620852103Search in Google Scholar
León J, Gayubas B, Castillo MC. Valine-glutamine proteins in plant responses to oxygen and nitric oxide. Frontiers in Plant Science 2021, 11, 632678.LeónJGayubasBCastilloMCValine-glutamine proteins in plant responses to oxygen and nitric oxideFrontiers in Plant Science202111632678Search in Google Scholar
Rehman AU, Masood S, Khan NU, Abbasi ME, Hussain Z, Ali I. Molecular basis of Iron Biofortification in crop plants; A step towards sustainability. Plant Breed 2021, 140, 12–22. https://doi.org/10.1111/pbr.12886RehmanAUMasoodSKhanNUAbbasiMEHussainZAliIMolecular basis of Iron Biofortification in crop plants; A step towards sustainabilityPlant Breed20211401222https://doi.org/10.1111/pbr.12886Search in Google Scholar
Popko MA, Wilk R, Górecka H, Chojnacka KL, Górecki H. Assessment of New NKS Mg Fertilizer Based on Protein Hydrolysate of Keratin in Pot Experiments. Pol J Environ Stud 2015, 24(4), 1765–1772. https://doi.org/10.15244/pjoes/36823PopkoMAWilkRGóreckaHChojnackaKLGóreckiHAssessment of New NKS Mg Fertilizer Based on Protein Hydrolysate of Keratin in Pot ExperimentsPol J Environ Stud201524417651772https://doi.org/10.15244/pjoes/36823Search in Google Scholar