This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Glass, J.; Dainty, A.; Gibb, A., New build: Materials, techniques, skills and innovation. Energ Policy 2008, 36, (12), 4534–4538.GlassJ.DaintyA.GibbA.New build: Materials, techniques, skills and innovationEnerg Policy2008361245344538Search in Google Scholar
Baba, Y.; Shichijo, N.; Sedita, S.R., How do collaborations with universities affect firms' innovative performance? The role of „Pasteur scientists” in the advanced materials field. Res Policy 2009, 38, (5), 756–764.BabaY.ShichijoN.SeditaS.R.How do collaborations with universities affect firms' innovative performance? The role of „Pasteur scientists” in the advanced materials fieldRes Policy2009385756764Search in Google Scholar
Lubik, S.; Garnsey, E., Early Business Model Evolution in Science-based Ventures: The Case of Advanced Materials. Long Range Plann 2016, 49, (3), 393–408.LubikS.GarnseyE.Early Business Model Evolution in Science-based Ventures: The Case of Advanced MaterialsLong Range Plann2016493393408Search in Google Scholar
Ross, F., Refashioning London's bespoke and demi-bespoke tailors: new textiles, technology and design in contemporary menswear. J Text I 2007, 98, (3), 281–288.RossF.Refashioning London's bespoke and demi-bespoke tailors: new textiles, technology and design in contemporary menswearJ Text I2007983281288Search in Google Scholar
Cheng, A.C., Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders. Technovation 2012, 32, (3–4), 163–167.ChengA.C.Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powdersTechnovation2012323–4163167Search in Google Scholar
Bagherzadeh, R.; Abrishami, S.; Shirali, A.; Rajabzadeh, A.R., Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: novel materials, recent advances, and future perspectives. Mater Today Sustain 2022, 20.BagherzadehR.AbrishamiS.ShiraliA.RajabzadehA.R.Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: novel materials, recent advances, and future perspectivesMater Today Sustain202220Search in Google Scholar
Cheng, A.C., Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders. Technovation 2012, 32, (3–4), 163–167.ChengA.C.Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powdersTechnovation2012323–4163167Search in Google Scholar
Czajkowski, T.; Woźniak-Malczewska, M., Innovativeness of chosen Polish textile-clothing companies. Autex Res J 2017, 17, (1), 48–52.CzajkowskiT.Woźniak-MalczewskaM.Innovativeness of chosen Polish textile-clothing companiesAutex Res J20171714852Search in Google Scholar
Gugliuzza, A.; Drioli, E., A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membrane Sci 2013, 446, 350–375.GugliuzzaA.DrioliE.A review on membrane engineering for innovation in wearable fabrics and protective textilesJ Membrane Sci2013446350375Search in Google Scholar
Stenton, M.; Houghton, J.A.; Kapsali, V.; Blackburn, R.S., The Potential for Regenerated Protein Fibres within a Circular Economy: Lessons from the Past Can Inform Sustainable Innovation in the Textiles Industry. Sustainability-Basel 2021, 13, (4).StentonM.HoughtonJ.A.KapsaliV.BlackburnR.S.The Potential for Regenerated Protein Fibres within a Circular Economy: Lessons from the Past Can Inform Sustainable Innovation in the Textiles IndustrySustainability-Basel2021134Search in Google Scholar
Maggioni, M.A.; Uberti, T.E.; Usai, S., Treating Patents as Relational Data: Knowledge Transfers and Spillovers across Italian Provinces. Ind Innov 2011, 18, (1), 39–67.MaggioniM.A.UbertiT.E.UsaiS.Treating Patents as Relational Data: Knowledge Transfers and Spillovers across Italian ProvincesInd Innov20111813967Search in Google Scholar
Sun, M.H.; Zhu, X.Z.; Jiang, M., Exploring the innovation landscape of bamboo fiber technologies from global patent data perspective. Cellulose 2020, 27, (16), 9137–9156.SunM.H.ZhuX.Z.JiangM.Exploring the innovation landscape of bamboo fiber technologies from global patent data perspectiveCellulose2020271691379156Search in Google Scholar
Erdi, P.; Makovi, K.; Somogyvari, Z.; Strandburg, K.; Tobochnik, J.; Volf, P.; Zalanyi, L., Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics 2013, 95, (1), 225–242.ErdiP.MakoviK.SomogyvariZ.StrandburgK.TobochnikJ.VolfP.ZalanyiL.Prediction of emerging technologies based on analysis of the US patent citation networkScientometrics2013951225242Search in Google Scholar
Giannini, V.; Iacobucci, D.; Perugini, F., Local variety and innovation performance in the EU textile and clothing industry. Econ Innov New Tech 2019, 28, (8), 841–857.GianniniV.IacobucciD.PeruginiF.Local variety and innovation performance in the EU textile and clothing industryEcon Innov New Tech2019288841857Search in Google Scholar
Luan, P.C.; Zhao, X.H.; Copenhaver, K.; Ozcan, S.; Zhu, H.L., Turning Natural Herbaceous Fibers into Advanced Materials for Sustainability. Adv Fiber Mater 2022, 4, (4), 736–757.LuanP.C.ZhaoX.H.CopenhaverK.OzcanS.ZhuH.L.Turning Natural Herbaceous Fibers into Advanced Materials for SustainabilityAdv Fiber Mater202244736757Search in Google Scholar
Hu, R.; Liu, Y.D.; Shin, S.M.; Huang, S.Y.; Ren, X.C.; Shu, W.C.; Cheng, J.J.; Tao, G.M.; Xu, W.L.; Chen, R.K.; Luo, X.B., Emerging Materials and Strategies for Personal Thermal Management. Adv Energy Mater 2020, 10, (17).HuR.LiuY.D.ShinS.M.HuangS.Y.RenX.C.ShuW.C.ChengJ.J.TaoG.M.XuW.L.ChenR.K.LuoX.B.Emerging Materials and Strategies for Personal Thermal ManagementAdv Energy Mater20201017Search in Google Scholar
Hu, L.B.; Pasta, M.; La Mantia, F.; Cui, L.F.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y., Stretchable, Porous, and Conductive Energy Textiles. Nano Lett 2010, 10, (2), 708–714.HuL.B.PastaM.La MantiaF.CuiL.F.JeongS.DeshazerH.D.ChoiJ.W.HanS.M.CuiY.Stretchable, Porous, and Conductive Energy TextilesNano Lett2010102708714Search in Google Scholar
Cheng, A.C., Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders. Technovation 2012, 32, (3–4), 163–167.ChengA.C.Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powdersTechnovation2012323–4163167Search in Google Scholar
Kamiński, K.; Jarosz, M.; Grudzień, J.; Pawlik, J.; Zastawnik, F.; Pandyra, P.; Kolodziejczyk, A.M., Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose 2020, 27, (9), 5353–5365.KamińskiK.JaroszM.GrudzieńJ.PawlikJ.ZastawnikF.PandyraP.KolodziejczykA.M.Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textilesCellulose202027953535365Search in Google Scholar
Kang, T.J.; Choi, A.; Kim, D.H.; Jin, K.; Seo, D.K.; Jeong, D.H.; Hong, S.H.; Park, Y.W.; Kim, Y.H., Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater Struct 2011, 20, (1).KangT.J.ChoiA.KimD.H.JinK.SeoD.K.JeongD.H.HongS.H.ParkY.W.KimY.H.Electromechanical properties of CNT-coated cotton yarn for electronic textile applicationsSmart Mater Struct2011201Search in Google Scholar
Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y.X.; Xu, N.; Wu, Z.; Li, J.L.; Li, X.Q.; Catrysse, P.B.; Xu, W.L.; Fan, S.H.; Zhu, J., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol 2021, 16, (12), 1342–U36.ZhuB.LiW.ZhangQ.LiD.LiuX.WangY.X.XuN.WuZ.LiJ.L.LiX.Q.CatrysseP.B.XuW.L.FanS.H.ZhuJ.Subambient daytime radiative cooling textile based on nanoprocessed silkNat Nanotechnol202116121342U36Search in Google Scholar
Kohler, A.R.; Som, C., Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textiles. Technovation 2014, 34, (8SI), 420–430.KohlerA.R.SomC.Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textilesTechnovation2014348SI420430Search in Google Scholar
Dangelico, R.M.; Pontrandolfo, P.; Pujari, D., Developing Sustainable New Products in the Textile and Upholstered Furniture Industries: Role of External Integrative Capabilities. J Prod Innovat Manag 2013, 30, (4), 642–658.DangelicoR.M.PontrandolfoP.PujariD.Developing Sustainable New Products in the Textile and Upholstered Furniture Industries: Role of External Integrative CapabilitiesJ Prod Innovat Manag2013304642658Search in Google Scholar
Bessen, J., The value of US patents by owner and patent characteristics. Res Policy 2008, 37, (5), 932–945.BessenJ.The value of US patents by owner and patent characteristicsRes Policy2008375932945Search in Google Scholar
Frietsch, R.; Neuhäusler, P.; Jung, T.; Van Looy, B., Patent indicators for macroeconomic growth-the value of patents estimated by export volume. Technovation 2014, 34, (9), 546–558.FrietschR.NeuhäuslerP.JungT.Van LooyB.Patent indicators for macroeconomic growth-the value of patents estimated by export volumeTechnovation2014349546558Search in Google Scholar
Lanjouw, J.O.; Schankerman, M., Characteristics of Patent Litigation: A Window on Competition. Rand J Econ 2001, 32, (1), 129–151.LanjouwJ.O.SchankermanM.Characteristics of Patent Litigation: A Window on CompetitionRand J Econ2001321129151Search in Google Scholar
Fischer, T.; Leidinger, J., Testing patent value indicators on directly observed patent value-An empirical analysis of Ocean Tomo patent auctions. Res Policy 2014, 43, (3), 519–529.FischerT.LeidingerJ.Testing patent value indicators on directly observed patent value-An empirical analysis of Ocean Tomo patent auctionsRes Policy2014433519529Search in Google Scholar
Cremers, K.; Harhoff, D.; Scherer, F.M.; Vopel, K., Citations, Family Size, Opposition and the Value of Patent Rights. Res Policy 2003, 32, (8), 1343–1363.CremersK.HarhoffD.SchererF.M.VopelK.Citations, Family Size, Opposition and the Value of Patent RightsRes Policy200332813431363Search in Google Scholar
Gambardella, A.; Harhoff, D.; Verspagen, B., The value of European patents. Eur Manag Rev 2008, 5, (2), 69–84.GambardellaA.HarhoffD.VerspagenB.The value of European patentsEur Manag Rev2008526984Search in Google Scholar
Sapsalis, E.; van Pottelsberghe, B.; Navon, R., Academic Versus Industry Patenting: An In-Depth Analysis of What Determines Patent Value. Res Policy 2006, 35, (10), 1631–1645.SapsalisE.van PottelsbergheB.NavonR.Academic Versus Industry Patenting: An In-Depth Analysis of What Determines Patent ValueRes Policy2006351016311645Search in Google Scholar
Słubik, A.; Masłowska-Lipowicz, I.; Wyrębska, L.; Królikowski, B.; Malinowski, R.; Bajer, K., New ionic liquids based on the biguanide cation with antimicrobial properties for applications in the textile and polymer materials industries. Fibres Text East Eur 2023, 31, (1), 9–14.SłubikA.Masłowska-LipowiczI.WyrębskaL.KrólikowskiB.MalinowskiR.BajerK.New ionic liquids based on the biguanide cation with antimicrobial properties for applications in the textile and polymer materials industriesFibres Text East Eur2023311914Search in Google Scholar
Papaspyrides, C.D.; Pavlidou, S.; Vouyiouka, S.N., Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabrics. Proc. I Mech Eng. Part L:J. Mat 2009, 223, (L2), 91–102.PapaspyridesC.D.PavlidouS.VouyioukaS.N.Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabricsProc. I Mech Eng. Part L:J. Mat2009223L291102Search in Google Scholar
Sibiescu, D.; Chirila, L.; Rosca, I.; Butnaru, R.; Vizitiu, M.; Carja, G., NEW COMPLEXES USED TO INCREASE THE DYING PROCESS EFFICIENCY OF THE TEXTILE MATERIALS IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT. Environ Eng Manag J 2010, 9, (1), 119–123.SibiescuD.ChirilaL.RoscaI.ButnaruR.VizitiuM.CarjaG.NEW COMPLEXES USED TO INCREASE THE DYING PROCESS EFFICIENCY OF THE TEXTILE MATERIALS IN THE CONTEXT OF SUSTAINABLE DEVELOPMENTEnviron Eng Manag J201091119123Search in Google Scholar
Yu, X.; Zhang, B., Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technol Forecast Soc 2019, 145, 273–283.YuX.ZhangB.Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planningTechnol Forecast Soc2019145273283Search in Google Scholar
Ozcan, S.; Unalan, S., Blockchain as a General-Purpose Technology: Patentometric Evidence of Science, Technologies, and Actors. Ieee T Eng Manage 2022, 69, (3), 792–809.OzcanS.UnalanS.Blockchain as a General-Purpose Technology: Patentometric Evidence of Science, Technologies, and ActorsIeee T Eng Manage2022693792809Search in Google Scholar
Lai, K.K.; Chen, H.C.; Chang, Y.H.; Kumar, V.; Bhatt, P.C., A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometrics. J Knowl Manag 2021, 25, (2), 402–432.LaiK.K.ChenH.C.ChangY.H.KumarV.BhattP.C.A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometricsJ Knowl Manag2021252402432Search in Google Scholar
Song, H.Y.; Hou, J.H.; Zhang, Y., Catalytic capacity of technological innovation: Multidimensional definition and measurement from the perspective of knowledge spillover. Technol Soc 2022, 68.SongH.Y.HouJ.H.ZhangY.Catalytic capacity of technological innovation: Multidimensional definition and measurement from the perspective of knowledge spilloverTechnol Soc202268Search in Google Scholar
Daniel, I.M., Failure of composite materials. Strain 2007, 43, (1), 4–12.DanielI.M.Failure of composite materialsStrain2007431412Search in Google Scholar
Lua, J., Thermal-mechanical cell model for unbalanced plain weave woven fabric composites. Compos Part a-Appl S 2007, 38, (3), 1019–1037.LuaJ.Thermal-mechanical cell model for unbalanced plain weave woven fabric compositesCompos Part a-Appl S200738310191037Search in Google Scholar
Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H.S.; de Graaf, E.F.; Gorczyca, J.L.; Harrison, P.; Hivet, G.; Launay, J.; Lee, W.; Liu, L.; Lomov, S.V.; Long, A.; de Luycker, E.; Morestin, F.; Padvoiskis, J.; Peng, X.Q.; Sherwood, J.; Stoilova, T.; Tao, X.M.; Verpoest, I.; Willems, A.; Wiggers, J.; Yu, T.X.; Zhu, B., Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos Part a-Appl S 2008, 39, (6), 1037–1053.CaoJ.AkkermanR.BoisseP.ChenJ.ChengH.S.de GraafE.F.GorczycaJ.L.HarrisonP.HivetG.LaunayJ.LeeW.LiuL.LomovS.V.LongA.de LuyckerE.MorestinF.PadvoiskisJ.PengX.Q.SherwoodJ.StoilovaT.TaoX.M.VerpoestI.WillemsA.WiggersJ.YuT.X.ZhuB.Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark resultsCompos Part a-Appl S200839610371053Search in Google Scholar
Engel, J.; Liu, C., Creation of a metallic micromachined chain mail fabric. J Micromech Microeng 2007, 17, (3), 551–556.EngelJ.LiuC.Creation of a metallic micromachined chain mail fabricJ Micromech Microeng2007173551556Search in Google Scholar
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K., A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 2011, 6, (5), 296–301.YamadaT.HayamizuY.YamamotoY.YomogidaY.Izadi-NajafabadiA.FutabaD.N.HataK.A stretchable carbon nanotube strain sensor for human-motion detectionNat Nanotechnol201165296301Search in Google Scholar
Hyde, G.K.; Park, K.J.; Stewart, S.M.; Hinestroza, J.P.; Parsons, G.N., Atomic layer deposition of Conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: Effect of surface topology on film growth characteristics. Langmuir 2007, 23, (19), 9844–9849.HydeG.K.ParkK.J.StewartS.M.HinestrozaJ.P.ParsonsG.N.Atomic layer deposition of Conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: Effect of surface topology on film growth characteristicsLangmuir2007231998449849Search in Google Scholar
Ramaratnam, K.; Iyer, S.K.; Kinnan, M.K.; Chumanov, G.; Brown, P.J.; Luzinov, I., Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach. J Eng Fiber Fabr 2008, 3, (4), 1–14.RamaratnamK.IyerS.K.KinnanM.K.ChumanovG.BrownP.J.LuzinovI.Ultrahydrophobic Textiles Using Nanoparticles: Lotus ApproachJ Eng Fiber Fabr200834114Search in Google Scholar
Yao, J.R.; Sun, Y.Y., Preparation and characterization of polymerizable hindered amine-based antimicrobial fibrous materials. Ind Eng Chem Res 2008, 47, (16), 5819–5824.YaoJ.R.SunY.Y.Preparation and characterization of polymerizable hindered amine-based antimicrobial fibrous materialsInd Eng Chem Res2008471658195824Search in Google Scholar
Simon, C.M.; Kim, J.; Gomez-Gualdron, D.A.; Camp, J.S.; Chung, Y.G.; Martin, R.L.; Mercado, R.; Deem, M.W.; Gunter, D.; Haranczyk, M.; Sholl, D.S.; Snurr, R.Q.; Smit, B., The materials genome in action: identifying the performance limits for methane storage. Energ Environ Sci 2015, 8, (4), 1190–1199.SimonC.M.KimJ.Gomez-GualdronD.A.CampJ.S.ChungY.G.MartinR.L.MercadoR.DeemM.W.GunterD.HaranczykM.ShollD.S.SnurrR.Q.SmitB.The materials genome in action: identifying the performance limits for methane storageEnerg Environ Sci20158411901199Search in Google Scholar
Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.; Huan, T.D.; Pilania, G.; Botu, V.; Ramprasad, R., Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. Mater Today 2018, 21, (7), 785–796.Mannodi-KanakkithodiA.ChandrasekaranA.KimC.HuanT.D.PilaniaG.BotuV.RamprasadR.Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyondMater Today2018217785796Search in Google Scholar
Chen, Y.B., Integrated and Intelligent Manufacturing: Perspectives and Enablers. ENGINEERING 2017, 3, (5), 588–595.ChenY.B.Integrated and Intelligent Manufacturing: Perspectives and EnablersENGINEERING201735588595Search in Google Scholar
Wang, B., The Future of Manufacturing: A New Perspective. ENGINEERING 2018, 4, (5), 722–728.WangB.The Future of Manufacturing: A New PerspectiveENGINEERING201845722728Search in Google Scholar
Antonietti, R.; Montresor, S., Going beyond Relatedness: Regional Diversification Trajectories and Key Enabling Technologies (KETs) in Italian Regions. Econ Geogr 2021, 97, (2), 187–207.AntoniettiR.MontresorS.Going beyond Relatedness: Regional Diversification Trajectories and Key Enabling Technologies (KETs) in Italian RegionsEcon Geogr2021972187207Search in Google Scholar