Open Access

Analysis of patent innovation evolution and layout characteristics of global new textile materials technologies

,  and   
Oct 30, 2024

Cite
Download Cover

Glass, J.; Dainty, A.; Gibb, A., New build: Materials, techniques, skills and innovation. Energ Policy 2008, 36, (12), 4534–4538. GlassJ. DaintyA. GibbA. New build: Materials, techniques, skills and innovation Energ Policy 2008 36 12 4534 4538 Search in Google Scholar

Baba, Y.; Shichijo, N.; Sedita, S.R., How do collaborations with universities affect firms' innovative performance? The role of „Pasteur scientists” in the advanced materials field. Res Policy 2009, 38, (5), 756–764. BabaY. ShichijoN. SeditaS.R. How do collaborations with universities affect firms' innovative performance? The role of „Pasteur scientists” in the advanced materials field Res Policy 2009 38 5 756 764 Search in Google Scholar

Lubik, S.; Garnsey, E., Early Business Model Evolution in Science-based Ventures: The Case of Advanced Materials. Long Range Plann 2016, 49, (3), 393–408. LubikS. GarnseyE. Early Business Model Evolution in Science-based Ventures: The Case of Advanced Materials Long Range Plann 2016 49 3 393 408 Search in Google Scholar

Ross, F., Refashioning London's bespoke and demi-bespoke tailors: new textiles, technology and design in contemporary menswear. J Text I 2007, 98, (3), 281–288. RossF. Refashioning London's bespoke and demi-bespoke tailors: new textiles, technology and design in contemporary menswear J Text I 2007 98 3 281 288 Search in Google Scholar

Cheng, A.C., Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders. Technovation 2012, 32, (3–4), 163–167. ChengA.C. Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders Technovation 2012 32 3–4 163 167 Search in Google Scholar

Bagherzadeh, R.; Abrishami, S.; Shirali, A.; Rajabzadeh, A.R., Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: novel materials, recent advances, and future perspectives. Mater Today Sustain 2022, 20. BagherzadehR. AbrishamiS. ShiraliA. RajabzadehA.R. Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: novel materials, recent advances, and future perspectives Mater Today Sustain 2022 20 Search in Google Scholar

Cheng, A.C., Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders. Technovation 2012, 32, (3–4), 163–167. ChengA.C. Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders Technovation 2012 32 3–4 163 167 Search in Google Scholar

Czajkowski, T.; Woźniak-Malczewska, M., Innovativeness of chosen Polish textile-clothing companies. Autex Res J 2017, 17, (1), 48–52. CzajkowskiT. Woźniak-MalczewskaM. Innovativeness of chosen Polish textile-clothing companies Autex Res J 2017 17 1 48 52 Search in Google Scholar

Gugliuzza, A.; Drioli, E., A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membrane Sci 2013, 446, 350–375. GugliuzzaA. DrioliE. A review on membrane engineering for innovation in wearable fabrics and protective textiles J Membrane Sci 2013 446 350 375 Search in Google Scholar

Stenton, M.; Houghton, J.A.; Kapsali, V.; Blackburn, R.S., The Potential for Regenerated Protein Fibres within a Circular Economy: Lessons from the Past Can Inform Sustainable Innovation in the Textiles Industry. Sustainability-Basel 2021, 13, (4). StentonM. HoughtonJ.A. KapsaliV. BlackburnR.S. The Potential for Regenerated Protein Fibres within a Circular Economy: Lessons from the Past Can Inform Sustainable Innovation in the Textiles Industry Sustainability-Basel 2021 13 4 Search in Google Scholar

Maggioni, M.A.; Uberti, T.E.; Usai, S., Treating Patents as Relational Data: Knowledge Transfers and Spillovers across Italian Provinces. Ind Innov 2011, 18, (1), 39–67. MaggioniM.A. UbertiT.E. UsaiS. Treating Patents as Relational Data: Knowledge Transfers and Spillovers across Italian Provinces Ind Innov 2011 18 1 39 67 Search in Google Scholar

Sun, M.H.; Zhu, X.Z.; Jiang, M., Exploring the innovation landscape of bamboo fiber technologies from global patent data perspective. Cellulose 2020, 27, (16), 9137–9156. SunM.H. ZhuX.Z. JiangM. Exploring the innovation landscape of bamboo fiber technologies from global patent data perspective Cellulose 2020 27 16 9137 9156 Search in Google Scholar

Erdi, P.; Makovi, K.; Somogyvari, Z.; Strandburg, K.; Tobochnik, J.; Volf, P.; Zalanyi, L., Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics 2013, 95, (1), 225–242. ErdiP. MakoviK. SomogyvariZ. StrandburgK. TobochnikJ. VolfP. ZalanyiL. Prediction of emerging technologies based on analysis of the US patent citation network Scientometrics 2013 95 1 225 242 Search in Google Scholar

Giannini, V.; Iacobucci, D.; Perugini, F., Local variety and innovation performance in the EU textile and clothing industry. Econ Innov New Tech 2019, 28, (8), 841–857. GianniniV. IacobucciD. PeruginiF. Local variety and innovation performance in the EU textile and clothing industry Econ Innov New Tech 2019 28 8 841 857 Search in Google Scholar

Luan, P.C.; Zhao, X.H.; Copenhaver, K.; Ozcan, S.; Zhu, H.L., Turning Natural Herbaceous Fibers into Advanced Materials for Sustainability. Adv Fiber Mater 2022, 4, (4), 736–757. LuanP.C. ZhaoX.H. CopenhaverK. OzcanS. ZhuH.L. Turning Natural Herbaceous Fibers into Advanced Materials for Sustainability Adv Fiber Mater 2022 4 4 736 757 Search in Google Scholar

Hu, R.; Liu, Y.D.; Shin, S.M.; Huang, S.Y.; Ren, X.C.; Shu, W.C.; Cheng, J.J.; Tao, G.M.; Xu, W.L.; Chen, R.K.; Luo, X.B., Emerging Materials and Strategies for Personal Thermal Management. Adv Energy Mater 2020, 10, (17). HuR. LiuY.D. ShinS.M. HuangS.Y. RenX.C. ShuW.C. ChengJ.J. TaoG.M. XuW.L. ChenR.K. LuoX.B. Emerging Materials and Strategies for Personal Thermal Management Adv Energy Mater 2020 10 17 Search in Google Scholar

Hu, L.B.; Pasta, M.; La Mantia, F.; Cui, L.F.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y., Stretchable, Porous, and Conductive Energy Textiles. Nano Lett 2010, 10, (2), 708–714. HuL.B. PastaM. La MantiaF. CuiL.F. JeongS. DeshazerH.D. ChoiJ.W. HanS.M. CuiY. Stretchable, Porous, and Conductive Energy Textiles Nano Lett 2010 10 2 708 714 Search in Google Scholar

Cheng, A.C., Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders. Technovation 2012, 32, (3–4), 163–167. ChengA.C. Exploring the relationship between technology diffusion and new material diffusion: the example of advanced ceramic powders Technovation 2012 32 3–4 163 167 Search in Google Scholar

Kamiński, K.; Jarosz, M.; Grudzień, J.; Pawlik, J.; Zastawnik, F.; Pandyra, P.; Kolodziejczyk, A.M., Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles. Cellulose 2020, 27, (9), 5353–5365. KamińskiK. JaroszM. GrudzieńJ. PawlikJ. ZastawnikF. PandyraP. KolodziejczykA.M. Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles Cellulose 2020 27 9 5353 5365 Search in Google Scholar

Kang, T.J.; Choi, A.; Kim, D.H.; Jin, K.; Seo, D.K.; Jeong, D.H.; Hong, S.H.; Park, Y.W.; Kim, Y.H., Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater Struct 2011, 20, (1). KangT.J. ChoiA. KimD.H. JinK. SeoD.K. JeongD.H. HongS.H. ParkY.W. KimY.H. Electromechanical properties of CNT-coated cotton yarn for electronic textile applications Smart Mater Struct 2011 20 1 Search in Google Scholar

Zhu, B.; Li, W.; Zhang, Q.; Li, D.; Liu, X.; Wang, Y.X.; Xu, N.; Wu, Z.; Li, J.L.; Li, X.Q.; Catrysse, P.B.; Xu, W.L.; Fan, S.H.; Zhu, J., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat Nanotechnol 2021, 16, (12), 1342–U36. ZhuB. LiW. ZhangQ. LiD. LiuX. WangY.X. XuN. WuZ. LiJ.L. LiX.Q. CatrysseP.B. XuW.L. FanS.H. ZhuJ. Subambient daytime radiative cooling textile based on nanoprocessed silk Nat Nanotechnol 2021 16 12 1342 U36 Search in Google Scholar

Kohler, A.R.; Som, C., Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textiles. Technovation 2014, 34, (8SI), 420–430. KohlerA.R. SomC. Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textiles Technovation 2014 34 8SI 420 430 Search in Google Scholar

Dangelico, R.M.; Pontrandolfo, P.; Pujari, D., Developing Sustainable New Products in the Textile and Upholstered Furniture Industries: Role of External Integrative Capabilities. J Prod Innovat Manag 2013, 30, (4), 642–658. DangelicoR.M. PontrandolfoP. PujariD. Developing Sustainable New Products in the Textile and Upholstered Furniture Industries: Role of External Integrative Capabilities J Prod Innovat Manag 2013 30 4 642 658 Search in Google Scholar

Bessen, J., The value of US patents by owner and patent characteristics. Res Policy 2008, 37, (5), 932–945. BessenJ. The value of US patents by owner and patent characteristics Res Policy 2008 37 5 932 945 Search in Google Scholar

Frietsch, R.; Neuhäusler, P.; Jung, T.; Van Looy, B., Patent indicators for macroeconomic growth-the value of patents estimated by export volume. Technovation 2014, 34, (9), 546–558. FrietschR. NeuhäuslerP. JungT. Van LooyB. Patent indicators for macroeconomic growth-the value of patents estimated by export volume Technovation 2014 34 9 546 558 Search in Google Scholar

Lanjouw, J.O.; Schankerman, M., Characteristics of Patent Litigation: A Window on Competition. Rand J Econ 2001, 32, (1), 129–151. LanjouwJ.O. SchankermanM. Characteristics of Patent Litigation: A Window on Competition Rand J Econ 2001 32 1 129 151 Search in Google Scholar

Fischer, T.; Leidinger, J., Testing patent value indicators on directly observed patent value-An empirical analysis of Ocean Tomo patent auctions. Res Policy 2014, 43, (3), 519–529. FischerT. LeidingerJ. Testing patent value indicators on directly observed patent value-An empirical analysis of Ocean Tomo patent auctions Res Policy 2014 43 3 519 529 Search in Google Scholar

Cremers, K.; Harhoff, D.; Scherer, F.M.; Vopel, K., Citations, Family Size, Opposition and the Value of Patent Rights. Res Policy 2003, 32, (8), 1343–1363. CremersK. HarhoffD. SchererF.M. VopelK. Citations, Family Size, Opposition and the Value of Patent Rights Res Policy 2003 32 8 1343 1363 Search in Google Scholar

Gambardella, A.; Harhoff, D.; Verspagen, B., The value of European patents. Eur Manag Rev 2008, 5, (2), 69–84. GambardellaA. HarhoffD. VerspagenB. The value of European patents Eur Manag Rev 2008 5 2 69 84 Search in Google Scholar

Sapsalis, E.; van Pottelsberghe, B.; Navon, R., Academic Versus Industry Patenting: An In-Depth Analysis of What Determines Patent Value. Res Policy 2006, 35, (10), 1631–1645. SapsalisE. van PottelsbergheB. NavonR. Academic Versus Industry Patenting: An In-Depth Analysis of What Determines Patent Value Res Policy 2006 35 10 1631 1645 Search in Google Scholar

Słubik, A.; Masłowska-Lipowicz, I.; Wyrębska, L.; Królikowski, B.; Malinowski, R.; Bajer, K., New ionic liquids based on the biguanide cation with antimicrobial properties for applications in the textile and polymer materials industries. Fibres Text East Eur 2023, 31, (1), 9–14. SłubikA. Masłowska-LipowiczI. WyrębskaL. KrólikowskiB. MalinowskiR. BajerK. New ionic liquids based on the biguanide cation with antimicrobial properties for applications in the textile and polymer materials industries Fibres Text East Eur 2023 31 1 9 14 Search in Google Scholar

Papaspyrides, C.D.; Pavlidou, S.; Vouyiouka, S.N., Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabrics. Proc. I Mech Eng. Part L:J. Mat 2009, 223, (L2), 91–102. PapaspyridesC.D. PavlidouS. VouyioukaS.N. Development of advanced textile materials: natural fibre composites, anti-microbial, and flame-retardant fabrics Proc. I Mech Eng. Part L:J. Mat 2009 223 L2 91 102 Search in Google Scholar

Sibiescu, D.; Chirila, L.; Rosca, I.; Butnaru, R.; Vizitiu, M.; Carja, G., NEW COMPLEXES USED TO INCREASE THE DYING PROCESS EFFICIENCY OF THE TEXTILE MATERIALS IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT. Environ Eng Manag J 2010, 9, (1), 119–123. SibiescuD. ChirilaL. RoscaI. ButnaruR. VizitiuM. CarjaG. NEW COMPLEXES USED TO INCREASE THE DYING PROCESS EFFICIENCY OF THE TEXTILE MATERIALS IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT Environ Eng Manag J 2010 9 1 119 123 Search in Google Scholar

Yu, X.; Zhang, B., Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technol Forecast Soc 2019, 145, 273–283. YuX. ZhangB. Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning Technol Forecast Soc 2019 145 273 283 Search in Google Scholar

Ozcan, S.; Unalan, S., Blockchain as a General-Purpose Technology: Patentometric Evidence of Science, Technologies, and Actors. Ieee T Eng Manage 2022, 69, (3), 792–809. OzcanS. UnalanS. Blockchain as a General-Purpose Technology: Patentometric Evidence of Science, Technologies, and Actors Ieee T Eng Manage 2022 69 3 792 809 Search in Google Scholar

Lai, K.K.; Chen, H.C.; Chang, Y.H.; Kumar, V.; Bhatt, P.C., A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometrics. J Knowl Manag 2021, 25, (2), 402–432. LaiK.K. ChenH.C. ChangY.H. KumarV. BhattP.C. A structured MPA approach to explore technological core competence, knowledge flow, and technology development through social network patentometrics J Knowl Manag 2021 25 2 402 432 Search in Google Scholar

Song, H.Y.; Hou, J.H.; Zhang, Y., Catalytic capacity of technological innovation: Multidimensional definition and measurement from the perspective of knowledge spillover. Technol Soc 2022, 68. SongH.Y. HouJ.H. ZhangY. Catalytic capacity of technological innovation: Multidimensional definition and measurement from the perspective of knowledge spillover Technol Soc 2022 68 Search in Google Scholar

Daniel, I.M., Failure of composite materials. Strain 2007, 43, (1), 4–12. DanielI.M. Failure of composite materials Strain 2007 43 1 4 12 Search in Google Scholar

Lua, J., Thermal-mechanical cell model for unbalanced plain weave woven fabric composites. Compos Part a-Appl S 2007, 38, (3), 1019–1037. LuaJ. Thermal-mechanical cell model for unbalanced plain weave woven fabric composites Compos Part a-Appl S 2007 38 3 1019 1037 Search in Google Scholar

Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H.S.; de Graaf, E.F.; Gorczyca, J.L.; Harrison, P.; Hivet, G.; Launay, J.; Lee, W.; Liu, L.; Lomov, S.V.; Long, A.; de Luycker, E.; Morestin, F.; Padvoiskis, J.; Peng, X.Q.; Sherwood, J.; Stoilova, T.; Tao, X.M.; Verpoest, I.; Willems, A.; Wiggers, J.; Yu, T.X.; Zhu, B., Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos Part a-Appl S 2008, 39, (6), 1037–1053. CaoJ. AkkermanR. BoisseP. ChenJ. ChengH.S. de GraafE.F. GorczycaJ.L. HarrisonP. HivetG. LaunayJ. LeeW. LiuL. LomovS.V. LongA. de LuyckerE. MorestinF. PadvoiskisJ. PengX.Q. SherwoodJ. StoilovaT. TaoX.M. VerpoestI. WillemsA. WiggersJ. YuT.X. ZhuB. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results Compos Part a-Appl S 2008 39 6 1037 1053 Search in Google Scholar

Engel, J.; Liu, C., Creation of a metallic micromachined chain mail fabric. J Micromech Microeng 2007, 17, (3), 551–556. EngelJ. LiuC. Creation of a metallic micromachined chain mail fabric J Micromech Microeng 2007 17 3 551 556 Search in Google Scholar

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K., A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 2011, 6, (5), 296–301. YamadaT. HayamizuY. YamamotoY. YomogidaY. Izadi-NajafabadiA. FutabaD.N. HataK. A stretchable carbon nanotube strain sensor for human-motion detection Nat Nanotechnol 2011 6 5 296 301 Search in Google Scholar

Hyde, G.K.; Park, K.J.; Stewart, S.M.; Hinestroza, J.P.; Parsons, G.N., Atomic layer deposition of Conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: Effect of surface topology on film growth characteristics. Langmuir 2007, 23, (19), 9844–9849. HydeG.K. ParkK.J. StewartS.M. HinestrozaJ.P. ParsonsG.N. Atomic layer deposition of Conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: Effect of surface topology on film growth characteristics Langmuir 2007 23 19 9844 9849 Search in Google Scholar

Ramaratnam, K.; Iyer, S.K.; Kinnan, M.K.; Chumanov, G.; Brown, P.J.; Luzinov, I., Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach. J Eng Fiber Fabr 2008, 3, (4), 1–14. RamaratnamK. IyerS.K. KinnanM.K. ChumanovG. BrownP.J. LuzinovI. Ultrahydrophobic Textiles Using Nanoparticles: Lotus Approach J Eng Fiber Fabr 2008 3 4 1 14 Search in Google Scholar

Yao, J.R.; Sun, Y.Y., Preparation and characterization of polymerizable hindered amine-based antimicrobial fibrous materials. Ind Eng Chem Res 2008, 47, (16), 5819–5824. YaoJ.R. SunY.Y. Preparation and characterization of polymerizable hindered amine-based antimicrobial fibrous materials Ind Eng Chem Res 2008 47 16 5819 5824 Search in Google Scholar

Simon, C.M.; Kim, J.; Gomez-Gualdron, D.A.; Camp, J.S.; Chung, Y.G.; Martin, R.L.; Mercado, R.; Deem, M.W.; Gunter, D.; Haranczyk, M.; Sholl, D.S.; Snurr, R.Q.; Smit, B., The materials genome in action: identifying the performance limits for methane storage. Energ Environ Sci 2015, 8, (4), 1190–1199. SimonC.M. KimJ. Gomez-GualdronD.A. CampJ.S. ChungY.G. MartinR.L. MercadoR. DeemM.W. GunterD. HaranczykM. ShollD.S. SnurrR.Q. SmitB. The materials genome in action: identifying the performance limits for methane storage Energ Environ Sci 2015 8 4 1190 1199 Search in Google Scholar

Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.; Huan, T.D.; Pilania, G.; Botu, V.; Ramprasad, R., Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. Mater Today 2018, 21, (7), 785–796. Mannodi-KanakkithodiA. ChandrasekaranA. KimC. HuanT.D. PilaniaG. BotuV. RamprasadR. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond Mater Today 2018 21 7 785 796 Search in Google Scholar

Chen, Y.B., Integrated and Intelligent Manufacturing: Perspectives and Enablers. ENGINEERING 2017, 3, (5), 588–595. ChenY.B. Integrated and Intelligent Manufacturing: Perspectives and Enablers ENGINEERING 2017 3 5 588 595 Search in Google Scholar

Wang, B., The Future of Manufacturing: A New Perspective. ENGINEERING 2018, 4, (5), 722–728. WangB. The Future of Manufacturing: A New Perspective ENGINEERING 2018 4 5 722 728 Search in Google Scholar

Antonietti, R.; Montresor, S., Going beyond Relatedness: Regional Diversification Trajectories and Key Enabling Technologies (KETs) in Italian Regions. Econ Geogr 2021, 97, (2), 187–207. AntoniettiR. MontresorS. Going beyond Relatedness: Regional Diversification Trajectories and Key Enabling Technologies (KETs) in Italian Regions Econ Geogr 2021 97 2 187 207 Search in Google Scholar