Cite

DeVoy JE, Congiusta E, Lundberg DJ, Findeisen S, Bhattacharya S (2021) Post-Consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors. Waste Manage 136: 303–309. https://doi.org/10.1016/j.wasman.2021.10.009 DeVoyJE CongiustaE LundbergDJ FindeisenS BhattacharyaS 2021 Post-Consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors Waste Manage 136 303 309 https://doi.org/10.1016/j.wasman.2021.10.009 10.1016/j.wasman.2021.10.00934741829 Search in Google Scholar

Horvat KP, Wendramin KŠ (2021) Issues Surrounding Behavior toward Discarded Textiles and Garments in Ljubljana. Sustainability 13(11):6491. https://doi.org/10.3390/su13116491 HorvatKP Wendramin 2021 Issues Surrounding Behavior toward Discarded Textiles and Garments in Ljubljana Sustainability 13 11 6491 https://doi.org/10.3390/su13116491 10.3390/su13116491 Search in Google Scholar

Jäämaa L, Kaipia R (2022) The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Manage 141:173–182. https://doi.org/10.1016/j.wasman.2022.01.012 JäämaaL KaipiaR 2022 The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers Waste Manage 141 173 182 https://doi.org/10.1016/j.wasman.2022.01.012 10.1016/j.wasman.2022.01.01235115212 Search in Google Scholar

U.S. EPA (2018) Textiles: Material-Specific Data. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data Accessed 10 January 2022. U.S. EPA 2018 Textiles: Material-Specific Data https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data Accessed 10 January 2022. Search in Google Scholar

Wang Y (2010) Fibers and Textile Waste Utilization. Waste Biomass Valori 1:135–143. https://doi.org/10.1007/s12649-009-9005-y WangY 2010 Fibers and Textile Waste Utilization Waste Biomass Valori 1 135 143 https://doi.org/10.1007/s12649-009-9005-y 10.1007/s12649-009-9005-y Search in Google Scholar

Zhao Y, Chen W, Liu F, Zhao P (2022) Hydrothermal pretreatment of cotton textile wastes: Biofuel characteristics and biochar electrocatalytic performance. Fuel 316:123327. https://doi.org/10.1016/j.fuel.2022.123327 ZhaoY ChenW LiuF ZhaoP 2022 Hydrothermal pretreatment of cotton textile wastes: Biofuel characteristics and biochar electrocatalytic performance Fuel 316 123327. https://doi.org/10.1016/j.fuel.2022.123327 10.1016/j.fuel.2022.123327 Search in Google Scholar

Sadrolodabaee P, Claramunt J, Ardanuy M, de la Fuenteal A (2021) Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Stud Constr Mater 14:e00492. https://doi.org/10.1016/j.cscm.2021.e00492 SadrolodabaeeP ClaramuntJ ArdanuyM de la FuentealA 2021 Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications Case Stud Constr Mater 14 e00492 https://doi.org/10.1016/j.cscm.2021.e00492 10.1016/j.cscm.2021.e00492 Search in Google Scholar

Dissanayake DGK, Weerasinghe DU, Wijesinghe KAP, Kalpage KMDMP (2018) Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manage 79:356–361. https://doi.org/10.1016/j.wasman.2018.08.001 DissanayakeDGK WeerasingheDU WijesingheKAP KalpageKMDMP 2018 Developing a compression moulded thermal insulation panel using postindustrial textile waste Waste Manage 79 356 361 https://doi.org/10.1016/j.wasman.2018.08.001 10.1016/j.wasman.2018.08.00130343764 Search in Google Scholar

Jamshaid H, Hussain U, Mishra R, Tichy M, Muller M (2021) Turning textile waste into valuable yarn. Clean Eng Technol 5: 100341. https://doi.org/10.1016/j.clet.2021.100341 JamshaidH HussainU MishraR TichyM MullerM 2021 Turning textile waste into valuable yarn Clean Eng Technol 5 100341. https://doi.org/10.1016/j.clet.2021.100341 10.1016/j.clet.2021.100341 Search in Google Scholar

Lopatina A, Anugwom I, Blot H, Conde ÁS, Mänttäri M, Kallioinen M (2021) Re-use of waste cotton textile as an ultrafiltration membrane. J Environ Chem Eng 9(4): 105705. https://doi.org/10.1016/j.jece.2021.105705 LopatinaA AnugwomI BlotH CondeÁS MänttäriM KallioinenM 2021 Re-use of waste cotton textile as an ultrafiltration membrane J Environ Chem Eng 9 4 105705. https://doi.org/10.1016/j.jece.2021.105705 10.1016/j.jece.2021.105705 Search in Google Scholar

Rahman SS, Siddiqua S, Cherian C (2022) Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Clean Eng Technol 6:100420. https://doi.org/10.1016/j.clet.2022.100420 RahmanSS SiddiquaS CherianC 2022 Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect Clean Eng Technol 6 100420. https://doi.org/10.1016/j.clet.2022.100420 10.1016/j.clet.2022.100420 Search in Google Scholar

Zoccola M, Montarsolo A, Mossotti R, Patrucco A, Tonin C (2015). Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer. Waste Biomass Valori 6:891–897. https://doi.org/10.1007/s12649-015-9393-0 ZoccolaM MontarsoloA MossottiR PatruccoA ToninC 2015 Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer Waste Biomass Valori 6 891 897 https://doi.org/10.1007/s12649-015-9393-0 10.1007/s12649-015-9393-0 Search in Google Scholar

Boussine S, Ouakarrouch M, Bybi A, Laaroussi N, Garoum M, Tilioua A (2022) Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Appl Acoust 187: 108520. https://doi.org/10.1016/j.apacoust.2021.108520 BoussineS OuakarrouchM BybiA LaaroussiN GaroumM TiliouaA 2022 Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers Appl Acoust 187 108520. https://doi.org/10.1016/j.apacoust.2021.108520 10.1016/j.apacoust.2021.108520 Search in Google Scholar

Fiore V, Di Bella G, Valenza A (2020) Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. J Nat Fibers 17(10):1532–1543. https://doi.org/10.1080/15440478.2019.1584075 FioreV Di BellaG ValenzaA 2020 Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites J Nat Fibers 17 10 1532 1543 https://doi.org/10.1080/15440478.2019.1584075 10.1080/15440478.2019.1584075 Search in Google Scholar

Denes O, Florea I, Manea DL (2019) Utilization of Sheep Wool as a Building Material. Procedia Manuf 32: 236–241. https://doi.org/10.1016/j.promfg.2019.02.208 DenesO FloreaI ManeaDL 2019 Utilization of Sheep Wool as a Building Material Procedia Manuf 32 236 241 https://doi.org/10.1016/j.promfg.2019.02.208 10.1016/j.promfg.2019.02.208 Search in Google Scholar

Kamble Z, Behera BK (2021) Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr Build Mater 284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800 KambleZ BeheraBK 2021 Sustainable hybrid composites reinforced with textile waste for construction and building applications Constr Build Mater 284 122800. https://doi.org/10.1016/j.conbuildmat.2021.122800 10.1016/j.conbuildmat.2021.122800 Search in Google Scholar

Valverde IC, Castilla LH, Nuñez DF, Rodriguez-Senín E, de la Mano Ferreira R (2013) Development of New Insulation Panels Based on Textile Recycled Fibers. Waste Biomass Valori 4:139–146. https://doi.org/10.1007/s12649-012-9124-8 ValverdeIC CastillaLH NuñezDF Rodriguez-SenínE de la Mano FerreiraR 2013 Development of New Insulation Panels Based on Textile Recycled Fibers Waste Biomass Valori 4 139 146 https://doi.org/10.1007/s12649-012-9124-8 10.1007/s12649-012-9124-8 Search in Google Scholar

Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandjiwala RD (2015) Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build 92:161–169. https://doi.org/10.1016/j.enbuild.2015.01.056 PatnaikA MvubuM MuniyasamyS BothaA AnandjiwalaRD 2015 Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies Energy Build 92 161 169 https://doi.org/10.1016/j.enbuild.2015.01.056 10.1016/j.enbuild.2015.01.056 Search in Google Scholar

Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F (2021) Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. J Build Engin 35:102060. https://doi.org/10.1016/j.jobe.2020.102060 GhermezgoliZM MoezziM YekrangJ RafatSA SoltaniP BarezF 2021 Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool J Build Engin 35 102060. https://doi.org/10.1016/j.jobe.2020.102060 10.1016/j.jobe.2020.102060 Search in Google Scholar

Akter MMdK, Haq UN, Islamb MdM, Uddin MA (2022) Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh. Clean Environ Syst 4:100070. https://doi.org/10.1016/j.cesys.2022.100070 AkterMMdK HaqUN IslambMdM UddinMA 2022 Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh Clean Environ Syst 4 100070. https://doi.org/10.1016/j.cesys.2022.100070 10.1016/j.cesys.2022.100070 Search in Google Scholar

Stapulionienė R (2016) Development and investigation of thermal insulating composite from fibrous plants [Termoizoliacinio kompozito iš pluoštinių augalų kūrimas ir tyrimai]. PhD Dissertation. Vilnius: Technika StapulionienėR 2016 Development and investigation of thermal insulating composite from fibrous plants [Termoizoliacinio kompozito iš pluoštinių augalų kūrimas ir tyrimai] PhD Dissertation. Vilnius Technika 10.20334/2367-M Search in Google Scholar

Stapulionienė R, Vaitkus S, Vėjelis S, Sankauskaitė A (2016) Investigation of thermal conductivity of natural fibres processed by different mechanical methods. Int J Precis Eng Man 17:1371–1381. https://doi.org/10.1007/s12541-016-0163-0 StapulionienėR VaitkusS VėjelisS SankauskaitėA 2016 Investigation of thermal conductivity of natural fibres processed by different mechanical methods Int J Precis Eng Man 17 1371 1381 https://doi.org/10.1007/s12541-016-0163-0 10.1007/s12541-016-0163-0 Search in Google Scholar

ISO 1833-1:2006. Textiles — Quantitative chemical analysis — Part 1: General principles of testing. ISO ISO 1833-1 2006 Textiles — Quantitative chemical analysis — Part 1: General principles of testing ISO Search in Google Scholar

ISO 1833-4:2017. Textiles — Quantitative chemical analysis — Part 4: Mixtures of certain protein fibres with certain other fibres (method using hypochlorite). ISO ISO 1833-4 2017 Textiles — Quantitative chemical analysis — Part 4: Mixtures of certain protein fibres with certain other fibres (method using hypochlorite) ISO Search in Google Scholar

ISO 1833-7:2017. Textiles — Quantitative chemical analysis — Part 7: Mixtures of polyamide with certain other fibres (method using formic acid). ISO ISO 1833-7 2017 Textiles — Quantitative chemical analysis — Part 7: Mixtures of polyamide with certain other fibres (method using formic acid) ISO Search in Google Scholar

ISO 1833-11:2017. Textiles — Quantitative chemical analysis — Part 11: Mixtures of certain cellulose fibres with certain other fibres (method using sulfuric acid). ISO ISO 1833-11 2017 Textiles — Quantitative chemical analysis — Part 11: Mixtures of certain cellulose fibres with certain other fibres (method using sulfuric acid) ISO Search in Google Scholar

EN 12667:2001. Thermal performance of building materials and products, Determination of thermal resistance by means of guarded hot plate and heat flow meter methods, Products of high and medium thermal resistance. CEN EN 12667 2001 Thermal performance of building materials and products, Determination of thermal resistance by means of guarded hot plate and heat flow meter methods, Products of high and medium thermal resistance CEN Search in Google Scholar

ISO 8301:1991. Thermal insulation, Determination of steady-state thermal resistance and related properties, Heat flow meter aparatus. CEN ISO 8301 1991 Thermal insulation, Determination of steady-state thermal resistance and related properties, Heat flow meter aparatus CEN Search in Google Scholar

Data Science Textbook (2020). https://docs.tibco.com/data-science/textbook. Accessed 19 January 2021 Data Science Textbook 2020 https://docs.tibco.com/data-science/textbook. Accessed 19 January 2021 Search in Google Scholar

Chatterjee S, Simonoff SJ (2013) Handbook of Regression Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey ChatterjeeS SimonoffSJ 2013 Handbook of Regression Analysis John Wiley & Sons, Inc. Hoboken, New Jersey 10.1002/9781118532843 Search in Google Scholar

Zach, J., Korjenic, A., Petranek, V., Hroudova, J., Bednar, T.. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. (2012). https://doi.org/10.1016/j.enbuild.2012.02.014 ZachJ. KorjenicA. PetranekV. HroudovaJ. BednarT. Performance evaluation and research of alternative thermal insulations based on sheep wool Energy Build. 2012 https://doi.org/10.1016/j.enbuild.2012.02.014 10.1016/j.enbuild.2012.02.014 Search in Google Scholar

Ye, Z., Wells, C.M., Carrington, C.G., Hewitt, N.J.. Thermal conductivity of wool and wool–hemp insulation. International J. Energy Res. (2006). https://doi.org/10.1002/er.1123 YeZ. WellsC.M. CarringtonC.G. HewittN.J. Thermal conductivity of wool and wool–hemp insulation International J. Energy Res. 2006 https://doi.org/10.1002/er.1123 10.1002/er.1123 Search in Google Scholar

Zach J, Hroudova J, Brožovsky J, Krejza Z, Gailius A (2013) Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems. Procedia Eng 57:1288–1294. https://doi.org/10.1016/j.proeng.2013.04.162 ZachJ HroudovaJ BrožovskyJ KrejzaZ GailiusA 2013 Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems Procedia Eng 57 1288 1294 https://doi.org/10.1016/j.proeng.2013.04.162 10.1016/j.proeng.2013.04.162 Search in Google Scholar

Dieckmann E, Onsiong R, Nagy B, Sheldrick L, Cheeseman C (2021) Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste Biomass Valori 12:1119–1131. https://doi.org/10.1007/s12649-020-01007-3 DieckmannE OnsiongR NagyB SheldrickL CheesemanC 2021 Valorization of Waste Feathers in the Production of New Thermal Insulation Materials Waste Biomass Valori 12 1119 1131 https://doi.org/10.1007/s12649-020-01007-3 10.1007/s12649-020-01007-3 Search in Google Scholar

Asdrubali F, D‘Alessandro F, Schiavoni SA (2015) Review of unconventional sustainable building insulation materials. Sustainable Mat Technol 4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002 AsdrubaliF D‘AlessandroF SchiavoniSA 2015 Review of unconventional sustainable building insulation materials Sustainable Mat Technol 4 1 17 https://doi.org/10.1016/j.susmat.2015.05.002 10.1016/j.susmat.2015.05.002 Search in Google Scholar

Bosia D, Savio L, Thiebat F, Patrucco A, Fantucci S, Piccablotto G, Marino D (2015) Sheep Wool for Sustainable Architecture. Energ Proc 78: 315–320. https://doi.org/10.1016/j.egypro.2015.11.650 BosiaD SavioL ThiebatF PatruccoA FantucciS PiccablottoG MarinoD 2015 Sheep Wool for Sustainable Architecture Energ Proc 78 315 320 https://doi.org/10.1016/j.egypro.2015.11.650 10.1016/j.egypro.2015.11.650 Search in Google Scholar

Plowman JE, Harland DP, Scobie DR, O’Connell D, Thomas A, Brorens PH, Richena M, Meenken E, Phillips AJ, Vernon J A, Clerens S (2019) Differences between ultrastructure and protein composition in straight hair fibres. Zoology 133: 40–53. https://doi.org/10.1016/j.zool.2019.01.002 PlowmanJE HarlandDP ScobieDR O’ConnellD ThomasA BrorensPH RichenaM MeenkenE PhillipsAJ Vernon JA ClerensS 2019 Differences between ultrastructure and protein composition in straight hair fibres Zoology 133 40 53 https://doi.org/10.1016/j.zool.2019.01.002 10.1016/j.zool.2019.01.00230979389 Search in Google Scholar

Kancheva M, Toncheva A, Manolova N, Rashkov I (2015) Enhancing the Mechanical Properties of Electrospun Polyester Mats by Heat Treatment. EXPRESS Polym Lett 9(1):49–65. http://dx.doi.org/10.3144/expresspolymlett.2015.6 KanchevaM TonchevaA ManolovaN RashkovI 2015 Enhancing the Mechanical Properties of Electrospun Polyester Mats by Heat Treatment EXPRESS Polym Lett 9 1 49 65 http://dx.doi.org/10.3144/expresspolymlett.2015.6 10.3144/expresspolymlett.2015.6 Search in Google Scholar