Cite

Wichterle O, Lim D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. DOI: 10.1038/185117a0. WichterleO LimD Hydrophilic gels for biological use Nature 1960 185 117 118 10.1038/185117a0 Open DOISearch in Google Scholar

Patel A, Mequanint K. Hydrogel Biomaterials, Biomedical Engineering - Frontiers and Challenges, Reza Fazel-Rezai, IntechOpen, DOI: 10.5772/24856. Available from: https://www.intechopen.com/books/biomedical-engineering-frontiers-and-challenges/hydrogelbiomaterials. PatelA MequanintK Hydrogel Biomaterials, Biomedical Engineering - Frontiers and Challenges, Reza Fazel-Rezai, IntechOpen 10.5772/24856 Available from: https://www.intechopen.com/books/biomedical-engineering-frontiers-and-challenges/hydrogelbiomaterials. Open DOISearch in Google Scholar

Ganji F, Vasheghani FS, Vasheghani FE. Theoretical description of hydrogel swelling: a review. Iranian Polymer Journal. 2010;19(5):375–398. DOI: 10.1.1.865.2003. GanjiF VasheghaniFS VasheghaniFE Theoretical description of hydrogel swelling: a review Iranian Polymer Journal 2010 19 5 375 398 10.1.1.865.2003 Open DOISearch in Google Scholar

Enas MA. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 2015;6(2):105–121. DOI: 10.1016/j.jare.2013.07.006. EnasMA Hydrogel: Preparation, characterization, and applications: A review Journal of Advanced Research 2015 6 2 105 121 10.1016/j.jare.2013.07.006 434845925750745 Open DOISearch in Google Scholar

Ciolacu DE. Structure-Property Relationships in Cellulose-Based Hydrogels. In: Mondal MIH. editor. Cellulose-Based Superabsorbent Hydrogels. Springer, 2019; p. 65–95. DOI: 10.1007/978-3-319-77830-3. CiolacuDE Structure-Property Relationships in Cellulose-Based Hydrogels In: MondalMIH editor. Cellulose-Based Superabsorbent Hydrogels Springer 2019 65 95 10.1007/978-3-319-77830-3 Open DOISearch in Google Scholar

Kaczmarek B, Nadolna K, Owczarek A. The physical and chemical properties of hydrogels based on natural polymers. In: Chen Y. editor. Hydrogels Based on Natural Polymers. Elsevier, 2020; p.151–172. DOI: 10.1016/B978-0-12-816421-1.00006-9. KaczmarekB NadolnaK OwczarekA The physical and chemical properties of hydrogels based on natural polymers In: ChenY. editor. Hydrogels Based on Natural Polymers Elsevier 2020 151 172 10.1016/B978-0-12-816421-1.00006-9 Open DOISearch in Google Scholar

Oyen ML. Mechanical characterization of hydrogel materials. International Materials Reviews. 2014;59(1):44–59. DOI: 10.1179/1743280413Y.0000000022 OyenML Mechanical characterization of hydrogel materials International Materials Reviews 2014 59 1 44 59 10.1179/1743280413Y.0000000022 Open DOISearch in Google Scholar

Kopecek J. Hydrogel biomaterials: A smart future? Biomaterials. 2007;28(34)5185–5192. KopecekJ Hydrogel biomaterials: A smart future? Biomaterials 2007 28 34 5185 5192 10.1016/j.biomaterials.2007.07.044221261417697712 Search in Google Scholar

Miri Klein M, Poverenov E. Natural biopolymer-based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture. 2020;100(6):2337–2347. DOI: 10.1002/jsfa.10274. Miri KleinM PoverenovE Natural biopolymer-based hydrogels for use in food and agriculture Journal of the Science of Food and Agriculture 2020 100 6 2337 2347 10.1002/jsfa.10274 31960453 Open DOISearch in Google Scholar

Behera S, Mahanwar PA. Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technology and Materials. 2020;59(4):341–356. DOI: 10.1080/25740881.2019.1647239 BeheraS MahanwarPA Superabsorbent polymers in agriculture and other applications: a review Polymer-Plastics Technology and Materials 2020 59 4 341 356 10.1080/25740881.2019.1647239 Open DOISearch in Google Scholar

Singhal R, Gupta K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polymer-Plastics Technology and Engineering. 2016;55(110):54–70. DOI: 10.1080/03602559.2015.1050520. SinghalR GuptaK A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters) Polymer-Plastics Technology and Engineering 2016 55 110 54 70 10.1080/03602559.2015.1050520 Open DOISearch in Google Scholar

Saini RK, Bajpai J, Bajpai AK. Synthesis of Poly(2-Hydroxyethyl Methacrylate) (PHEMA)-Based Superparamagnetic Nanoparticles for Biomedical and Pharmaceutical Applications. Methods in Molecular Biology. 2020;2118:165–174. DOI: 10.1007/978-1-0716-0319-2_13. SainiRK BajpaiJ BajpaiAK Synthesis of Poly(2-Hydroxyethyl Methacrylate) (PHEMA)-Based Superparamagnetic Nanoparticles for Biomedical and Pharmaceutical Applications Methods in Molecular Biology 2020 2118 165 174 10.1007/978-1-0716-0319-2_13 32152979 Open DOISearch in Google Scholar

Mackova H, Plichta Z, Hlidkova H, et al. Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. ACS Applied Materials & Interfaces. 2017;9(12):10544–10553. DOI: 10.1021/acsami.7b01513. MackovaH PlichtaZ HlidkovaH Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications ACS Applied Materials & Interfaces 2017 9 12 10544 10553 10.1021/acsami.7b01513 28287694 Open DOISearch in Google Scholar

Hassan CM, Peppas NA. Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In: Abe A, Albertsson AC, Cantow HJ, et al. editors. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Advances in Polymer Science. Berlin, Springer, 2000; p. 37–65. DOI: 10.1007/3-540-46414-X_2. HassanCM PeppasNA Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods In: AbeA AlbertssonAC CantowHJ editors. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Advances in Polymer Science Berlin Springer 2000 37 65 10.1007/3-540-46414-X_2 Open DOISearch in Google Scholar

Yang TH. Recent Applications of Polyacrylamide as Biomaterials. Recent Patents an material Science. 2008;1(1):29–40. DOI: 10.2174/1874464810801010029. YangTH Recent Applications of Polyacrylamide as Biomaterials Recent Patents an material Science 2008 1 1 29 40 10.2174/1874464810801010029 Open DOISearch in Google Scholar

Lee S, Tong X, Yang F. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomaterials Science Journal. 2016;4:405–411. DOI: 10.1039/C5BM00256G. LeeS TongX YangF Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release Biomaterials Science Journal 2016 4 405 411 10.1039/C5BM00256G 512762926539660 Open DOISearch in Google Scholar

Bahram M, Mohseni N, Moghtader M. An Introduction to Hydrogels and Some Recent Applications. In: Majee SB. editor. Emerging Concepts in Analysis and Applications of Hydrogels, IntechOpen, 2016. Available from: https://www.intechopen.com/books/emerging-concepts-in-analysis-and-applications-ofhydrogels/an-introduction-to-hydrogelsand-some-recent-applications. DOI: 10.5772/64301 BahramM MohseniN MoghtaderM An Introduction to Hydrogels and Some Recent Applications In: MajeeSB editor. Emerging Concepts in Analysis and Applications of Hydrogels, IntechOpen 2016. Available from: https://www.intechopen.com/books/emerging-concepts-in-analysis-and-applications-ofhydrogels/an-introduction-to-hydrogelsand-some-recent-applications. 10.5772/64301 Open DOISearch in Google Scholar

He W, Ma Y, Gao X, Wang X, Dai X, Song J. Application of Poly(N-isopropylacrylamide) As Thermo-sensitive Smart Materials. Journal of Physic: Conference Series. 2020;1676:012063. DOI: 10.1088/1742-6596/1676/1/012063. HeW MaY GaoX WangX DaiX SongJ Application of Poly(N-isopropylacrylamide) As Thermo-sensitive Smart Materials Journal of Physic: Conference Series 2020 1676 012063 10.1088/1742-6596/1676/1/012063 Open DOISearch in Google Scholar

Dashtebayaz MSS, Nourbakhsh MS. Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 2019;68(8):442–451. DOI: 10.1080/00914037.2018.1455680. DashtebayazMSS NourbakhshMS Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering International Journal of Polymeric Materials and Polymeric Biomaterials 2019 68 8 442 451 10.1080/00914037.2018.1455680 Open DOISearch in Google Scholar

Varghese SA, Rangappa SM, Siengchin S, Parameswaranpillai J. Chapter 2 - Natural polymers and the hydrogels prepared from them, In: Chen Y. editor. Hydrogels Based on Natural Polymers, Elsevier, 2020; p.17–47. DOI: 10.1016/B978-0-12-816421-1.00002-1. VargheseSA RangappaSM SiengchinS ParameswaranpillaiJ Chapter 2 - Natural polymers and the hydrogels prepared from them In: ChenY. editor. Hydrogels Based on Natural Polymers Elsevier 2020 17 47 10.1016/B978-0-12-816421-1.00002-1 Open DOISearch in Google Scholar

Xu X, Jha AK, Harrington DA, Farach-Carson MC, et al. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–3294. DOI: 10.22203/eCM.v037a12. XuX JhaAK HarringtonDA Farach-CarsonMC Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks Soft Matter 2012 8 3280 3294 10.22203/eCM.v037a12 30889270 Open DOISearch in Google Scholar

Suekama TC, Hu J, Kurokawa T, et al. Double-Network Strategy Improves Fracture Properties of Chondroitin Sulfate Networks. ACS Macro Letters. 2013;2(2):137–140. DOI: 10.1021/mz3006318. SuekamaTC HuJ KurokawaT Double-Network Strategy Improves Fracture Properties of Chondroitin Sulfate Networks ACS Macro Letters 2013 2 2 137 140 10.1021/mz3006318 35581775 Open DOISearch in Google Scholar

S.K. Samal, M. Dash, P. Dubruel, S. Van Vlierberghe. 8 - Smart polymer hydrogels: properties, synthesis and applications. In: Aguilar MR, Román JS. editors. Smart Polymers and their Applications, Woodhead Publishing, 2014; p. 237–270. DOI: 10.1533/9780857097026.1.237. SamalS.K. DashM. DubruelP. Van VlierbergheS. 8 - Smart polymer hydrogels: properties, synthesis and applications In: AguilarMR RománJS editors. Smart Polymers and their Applications Woodhead Publishing 2014 237 270 10.1533/9780857097026.1.237 Open DOISearch in Google Scholar

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews. 2008;60(15):1638–1649. DOI: 10.1016/j.addr.2008.08.002. HamidiM AzadiA RafieiP Hydrogel nanoparticles in drug delivery Advanced Drug Delivery Reviews 2008 60 15 1638 1649 10.1016/j.addr.2008.08.002 18840488 Open DOISearch in Google Scholar

Sudre G, Tran Y, Creton C, Hourdet D. pH/Temperature control of interpolymer complexation between poly(acrylic acid) and weak polybases in aqueous solutions, Polymer. 2012;2:379–385. DOI: 10.1016/j.polymer.2011.11.055. SudreG TranY CretonC HourdetD pH/Temperature control of interpolymer complexation between poly(acrylic acid) and weak polybases in aqueous solutions Polymer 2012 2 379 385 10.1016/j.polymer.2011.11.055 Open DOISearch in Google Scholar

Zhang S, Chen C, Li Z. Effects of molecular weight on thermal responsive property of pegylated poly-l-glutamates. Chinese Journal of Polymer Science. 2013;2:201–210. DOI: 10.1007/s10118-013-1218-7. ZhangS ChenC LiZ Effects of molecular weight on thermal responsive property of pegylated poly-l-glutamates Chinese Journal of Polymer Science 2013 2 201 210 10.1007/s10118-013-1218-7 Open DOISearch in Google Scholar

Yoshida T, Lai TC, Kwon GS. pH-and ion-sensitive polymers for drug delivery. Expert Opinion on Drug Delivery. 2013;10(11):1497–1513. DOI: 10.1517/17425247.2013.821978. YoshidaT LaiTC KwonGS pH-and ion-sensitive polymers for drug delivery Expert Opinion on Drug Delivery 2013 10 11 1497 1513 10.1517/17425247.2013.821978 391299223930949 Open DOISearch in Google Scholar

Ramos MLP, González JA, Fabian L et al. Sustainable and smart keratin hydrogel with pH-sensitive swelling and enhanced mechanical properties. Materials Science and Engineering: C. 2017;78:619–626. DOI: 10.1016/j.msec.2017.04.120. RamosMLP GonzálezJA FabianL Sustainable and smart keratin hydrogel with pH-sensitive swelling and enhanced mechanical properties Materials Science and Engineering: C 2017 78 619 626 10.1016/j.msec.2017.04.120 28576030 Open DOISearch in Google Scholar

Zhang Y, Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem. 2021;8:615665. DOI: 10.3389/fchem.2020.615665. ZhangY HuangY Rational Design of Smart Hydrogels for Biomedical Applications Front Chem. 2021 8 615665 10.3389/fchem.2020.615665 788981133614595 Open DOISearch in Google Scholar

Gomez-Florit M, Pardo A, Domingues RMA. et al. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules. 2020;25(24):5858. DOI: 10.3390/molecules25245858. Gomez-FloritM PardoA DominguesRMA Natural-Based Hydrogels for Tissue Engineering Applications Molecules 2020 25 24 5858 10.3390/molecules25245858 776343733322369 Open DOISearch in Google Scholar

Lee Y, Song WJ, Sun JY. Hydrogel soft robotics. Materials Today Physics. 2020;15:100258. DOI: 10.1016/j.mtphys.2020.100258 LeeY SongWJ SunJY Hydrogel soft robotics Materials Today Physics 2020 15 100258 10.1016/j.mtphys.2020.100258 Open DOISearch in Google Scholar

Park N, Kim J. Hydrogel-based artifial mascles: Overview and recent progress. Advanced Intelligent Systems. 2020;2(4):190013. DOI: 10.1002/aisy.201900135. ParkN KimJ Hydrogel-based artifial mascles: Overview and recent progress Advanced Intelligent Systems 2020 2 4 190013 10.1002/aisy.201900135 Open DOISearch in Google Scholar

Nikolov SV, Yeh PD. Alexeev A. Self-Propelled Microswimmer Actuated by Stimuli-Sensitive Bilayered Hydrogel. ACS Macro Letters. 2015;4(1):84–88. DOI: 10.1021/mz5007014 NikolovSV YehPD AlexeevA Self-Propelled Microswimmer Actuated by Stimuli-Sensitive Bilayered Hydrogel ACS Macro Letters 2015 4 1 84 88 10.1021/mz500701435596378 Open DOISearch in Google Scholar

Niculescu M, Epure D, Lason-Rydel M, Gaidau C, Gidea M, Enascuta C, Multifunctional biocomposites based on collagen and keratin with properties for agriculture and industry applications. Journal of Biotechnology. 2019; 305(15):S84–S85. DOI: 10.1016/j.jbiotec.2019.05.292. NiculescuM EpureD Lason-RydelM GaidauC GideaM EnascutaC Multifunctional biocomposites based on collagen and keratin with properties for agriculture and industry applications Journal of Biotechnology 2019 305 15 S84 S85 10.1016/j.jbiotec.2019.05.292 Open DOISearch in Google Scholar

Skwarek M, Pipiak P, Sieczynska K. Effect of fish collagen and poly(hexamethylene biguanide) hydrochloride on the content of micro- and macroelements in maize plants. Przemysł Chemiczny. 2020;99(10):1534–1537. DOI: 10.15199/62.2020.10.19. SkwarekM PipiakP SieczynskaK Effect of fish collagen and poly(hexamethylene biguanide) hydrochloride on the content of micro- and macroelements in maize plants Przemysł Chemiczny 2020 99 10 1534 1537 10.15199/62.2020.10.19 Open DOISearch in Google Scholar

Lim YS, Ok YS, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Marine Drugs. 2019; 7(8), 467. DOI: 10.3390/md17080467. LimYS OkYS HwangSY KwakJY YoonS Marine Collagen as A Promising Biomaterial for Biomedical Applications Marine Drugs 2019 7 8 467 10.3390/md17080467 672352731405173 Open DOISearch in Google Scholar

Skwarek M, Wala M, Kołodziejek J, Sieczyńska K, Lasoń-Rydel M, Ławińska K, Obraniak A. Seed Coating with Biowaste Materials and Biocides— Environment-Friendly Biostimulation or Threat? Agronomy. 2021; 11:1034. DOI: 10.3390/agronomy11061034. SkwarekM WalaM KołodziejekJ SieczyńskaK Lasoń-RydelM ŁawińskaK ObraniakA Seed Coating with Biowaste Materials and Biocides—Environment-Friendly Biostimulation or Threat? Agronomy 2021 11 1034 10.3390/agronomy11061034 Open DOISearch in Google Scholar

Skwarek M, Nawrocka J, Lasoń-Rydel M, Ławińska K. Diversity of Plant Biostimulants in Plant Growth Promotion and Stress Protection in Crop and Fibrous Plants. FIBRES & TEXTILES in Eastern Europe. 2020; 28, 4(142): 34–41. DOI: 10.5604/01.3001.0014.0931. SkwarekM NawrockaJ Lasoń-RydelM ŁawińskaK Diversity of Plant Biostimulants in Plant Growth Promotion and Stress Protection in Crop and Fibrous Plants FIBRES & TEXTILES in Eastern Europe 2020 28 4 142 34 41 10.5604/01.3001.0014.0931 Open DOISearch in Google Scholar

Ferraro V, Antona M, Santé-Lhoutellierb V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends in Food Science & Technology. 2016; 51:65–75. DOI: 10.1016/j.tifs.2016.03.006. FerraroV AntonaM Santé-LhoutellierbV The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application Trends in Food Science & Technology 2016 51 65 75 10.1016/j.tifs.2016.03.006 Open DOISearch in Google Scholar

Sharma S, Kumar A. Keratin as a Protein Biopolymer. Springer, 2019. SharmaS KumarA Keratin as a Protein Biopolymer Springer 2019 10.1007/978-3-030-02901-2 Search in Google Scholar

Ławińska K, Lasoń-Rydel M, Gendaszewska D, Grzesiak, Sieczyńska K, Gaidau C, Equre DG, Obraniak A. Coating of Seeds with Collagen Hydrolysates from Leather Waste. Fibres & Textiles in Eastern Europe. 2019;4:59–64. DOI: 10.5604/01.3001.0013.1819. ŁawińskaK Lasoń-RydelM GendaszewskaD Grzesiak SieczyńskaK GaidauC EqureDG ObraniakA Coating of Seeds with Collagen Hydrolysates from Leather Waste Fibres & Textiles in Eastern Europe 2019 4 59 64 10.5604/01.3001.0013.1819 Open DOISearch in Google Scholar

San Antonio JD, Jacenko O, Fertala A, Orgel J P R O. Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering. 2021;8:3. DOI: 10.3390/bioengineering8010003. San AntonioJD JacenkoO FertalaA OrgelJ P R O Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine Bioengineering 2021 8 3 10.3390/bioengineering8010003 782424433383610 Open DOISearch in Google Scholar

Ida T, Kaku M, Kitami M, et al. Extracellular matrix with defective collagen crosslinking affects the differentiation of bone cells. PLoS ONE. 2018;13:1–18. DOI: 10.1371/journal.pone.0204306. IdaT KakuM KitamiM Extracellular matrix with defective collagen crosslinking affects the differentiation of bone cells PLoS ONE 2018 13 1 18 10.1371/journal.pone.0204306 615552830252876 Open DOISearch in Google Scholar

Wang B, Yang W, McKittrick J, Meyers M A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progres in Materials Science. 2016;76: 229–318. DOI: 10.1016/j.pmatsci.2015.06.001. WangB YangW McKittrickJ MeyersM A Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration Progres in Materials Science 2016 76 229 318 10.1016/j.pmatsci.2015.06.001 Open DOISearch in Google Scholar

Balaji S, Kumae R, Sripriya R et al. Characterization of keratin–collagen 3D scaffold for biomedical applications. Polymers for Advanced Technology. 2011;3:500–507. DOI: 10.1002/pat.1905. BalajiS KumaeR SripriyaR Characterization of keratin–collagen 3D scaffold for biomedical applications Polymers for Advanced Technology 2011 3 500 507 10.1002/pat.1905 Open DOISearch in Google Scholar

Li Q, Yang S, Zhu L, Kang H, et al. Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polymer Chemistry. 2015;15:2869–2878. DOI: 10.1039/C4PY01750A. LiQ YangS ZhuL KangH Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers Polymer Chemistry 2015 15 2869 2878 10.1039/C4PY01750A Open DOISearch in Google Scholar

Chen S, Hori N, Kajiyama M, Takemura A. Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. International Journal of Biological Macromolecules. 2020;153:364–372. DOI: 10.1016/j.ijbiomac.2020.02.277. ChenS HoriN KajiyamaM TakemuraA Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties International Journal of Biological Macromolecules 2020 153 364 372 10.1016/j.ijbiomac.2020.02.277 32109472 Open DOISearch in Google Scholar

Bajestani MI, Kader S, Monavarian M, et al. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels. International Journal of Biological Macromolecules. 2020;142:790–802. DOI: 0.1016/j.ijbiomac.2019.10.020. BajestaniMI KaderS MonavarianM Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels International Journal of Biological Macromolecules 2020 142 790 802 0.1016/j.ijbiomac.2019.10.020 Open DOISearch in Google Scholar

Lopes do Lago G, Felisberti MI. pH and thermo-responsive hybrid hydrogels based on PNIPAAM and keratin. European Polymer Journal. 2020;125:109538. DOI: 10.1016/j.eurpolymj.2020.109538. Lopes do LagoG FelisbertiMI pH and thermo-responsive hybrid hydrogels based on PNIPAAM and keratin European Polymer Journal 2020 125 109538 10.1016/j.eurpolymj.2020.109538 Open DOISearch in Google Scholar

Ni N, Dumont MJ. Protein-Based Hydrogels Derived from Industrial Byproducts Containing Collagen, Keratin, Zein and Soy. Waste and Biomass Valorization. 2017;8:285–300. DOI: 10.1007/s12649-016-9684-0. NiN DumontMJ Protein-Based Hydrogels Derived from Industrial Byproducts Containing Collagen, Keratin, Zein and Soy Waste and Biomass Valorization 2017 8 285 300 10.1007/s12649-016-9684-0 Open DOISearch in Google Scholar

Giuffrida MG, Mazzoli R, Pessione E. Back to the past: deciphering cultural heritage secrets by protein identification. Applied Microbiology and Biotechnology. 2018;102:5445–5455. DOI: 10.1007/s00253-018-8963-z. GiuffridaMG MazzoliR PessioneE Back to the past: deciphering cultural heritage secrets by protein identification Applied Microbiology and Biotechnology 2018 102 5445 5455 10.1007/s00253-018-8963-z 29737392 Open DOISearch in Google Scholar

Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications, Biotechnology Advances, 2017;35(5):530–544. DOI: 10.1016/j.biotechadv.2017.05.006. NaahidiS JafariM LoganM Biocompatibility of hydrogel-based scaffolds for tissue engineering applications Biotechnology Advances 2017 35 5 530 544 10.1016/j.biotechadv.2017.05.006 28558979 Open DOISearch in Google Scholar

Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspective. Polymer. 2016;2:42. DOI: 10.3390/polym8020042. DongC LvY Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspective Polymer 2016 2 42 10.3390/polym8020042 643253230979136 Open DOISearch in Google Scholar

Wakuda Y, Nishimoto S, Suye S, Fujita S. Native collagen hydrogel nanofibers with anisotropic structure using core-shell electrospinning. Science Reports 2018:6;6248. DOI: 10.1038/s41598-018-24700-9. WakudaY NishimotoS SuyeS FujitaS Native collagen hydrogel nanofibers with anisotropic structure using core-shell electrospinning Science Reports 2018 6 6248 10.1038/s41598-018-24700-9 590885529674743 Open DOISearch in Google Scholar

Chuang CH, Lin RZ, Melero-Martin JM, Chen YC. Comparison of covalently and physically crosslinked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial Cells, Nanomedicine, and Biotechnology, An International Journal. 2018;46(3):434–447. DOI: 10.1080/21691401.2018.1499660. ChuangCH LinRZ Melero-MartinJM ChenYC Comparison of covalently and physically crosslinked collagen hydrogels on mediating vascular network formation for engineering adipose tissue Artificial Cells, Nanomedicine, and Biotechnology, An International Journal 2018 46 3 434 447 10.1080/21691401.2018.1499660 639321930146913 Open DOISearch in Google Scholar

Tian Z, Liu W, Li G. The microstructure and stability of collagen hydrogel crosslinked by glutaraldehyde. Polymer Degradation and Stability. 2016;13:264–270. DOI: 10.1016/j.polymdegradstab.2016.06.015. TianZ LiuW LiG The microstructure and stability of collagen hydrogel crosslinked by glutaraldehyde Polymer Degradation and Stability 2016 13 264 270 10.1016/j.polymdegradstab.2016.06.015 Open DOISearch in Google Scholar

Schroeder ME, Rodriguez AG, Speckl KF et all. Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization. Acta Biomaterialia. 2021;119:197–210. DOI: 10.1016/j.actbio.2020.11.012. SchroederME RodriguezAG SpecklKF Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization Acta Biomaterialia 2021 119 197 210 10.1016/j.actbio.2020.11.012 773837533181362 Open DOISearch in Google Scholar

Craciun G, Manaila E, Niculescu M, Ighigeanu D. Obtaining a new type of polyelectrolyte based on acrylamide and hydrolyzed collagen by electron beam irradiation. Polymer Bulletin. 2017;74:1299–1326. DOI: 10.1007/s00289-016-1778-0. CraciunG ManailaE NiculescuM IghigeanuD Obtaining a new type of polyelectrolyte based on acrylamide and hydrolyzed collagen by electron beam irradiation Polymer Bulletin 2017 74 1299 1326 10.1007/s00289-016-1778-0 Open DOISearch in Google Scholar

Vedhanayagam M, Anandasadagopan S, Nair BU, Sreeram KJ. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. Materials Science and Engineering. 2020;108:110378–110390. DOI: 10.1016/j.msec.2019.110378. VedhanayagamM AnandasadagopanS NairBU SreeramKJ Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites Materials Science and Engineering 2020 108 110378 110390 10.1016/j.msec.2019.110378 31924005 Open DOISearch in Google Scholar

Lan W, Xu M, Zhang X, Zhao L, Huang D, Wei X, Chen W. Biomimetic polyvinyl alcohol/type II collagen hydrogels for cartilage tissue engineering. Journal Biomaterials Science Polymer Edition. 2020;9:1179–1198. DOI: 10.1080/09205063.2020.1747184. LanW XuM ZhangX ZhaoL HuangD WeiX ChenW Biomimetic polyvinyl alcohol/type II collagen hydrogels for cartilage tissue engineering Journal Biomaterials Science Polymer Edition 2020 9 1179 1198 10.1080/09205063.2020.1747184 32207369 Open DOISearch in Google Scholar

Agban Y, Mugisho OO, Thakur SS, Rupenthal ID. Characterization of Zinc Oxide Nanoparticle Crosslinked Collagen Hydrogel. Gels. 2020;4:37–46. AgbanY MugishoOO ThakurSS RupenthalID Characterization of Zinc Oxide Nanoparticle Crosslinked Collagen Hydrogel Gels 2020 4 37 46 10.3390/gels6040037770963533105715 Search in Google Scholar

Yue K, Liu Y, Byambaa B, Singh V, Liu W, Li X, Sun Y, Zhang SY, Tamayol A, Zhang P, Ng KW, Annabi N, Khademhosseini A. Visible Light Crosslinkable Human Hair Keratin Hydrogels. Bioengineering & Translational Medicine. 2017;1:37–48. DOI: 10.1002/btm2.10077. YueK LiuY ByambaaB SinghV LiuW LiX SunY ZhangSY TamayolA ZhangP NgKW AnnabiN KhademhosseiniA Visible Light Crosslinkable Human Hair Keratin Hydrogels Bioengineering & Translational Medicine 2017 1 37 48 10.1002/btm2.10077 577394229376132 Open DOISearch in Google Scholar

Lee C Pant B, Kim SB, Jang RS, Park S, Park M, Park SJ, Kim HY. Carbon Quantum Dots Incorporated Keratin/Polyvinyl Alcohol Hydrogels: Preparation and Photoluminescent Assessment. Mater Lett. 2017;207:57–61. DOI: 10.1016/j.matlet.2017.07.058. LeeC PantB KimSB JangRS ParkS ParkM ParkSJ KimHY Carbon Quantum Dots Incorporated Keratin/Polyvinyl Alcohol Hydrogels: Preparation and Photoluminescent Assessment Mater Lett 2017 207 57 61 10.1016/j.matlet.2017.07.058 Open DOISearch in Google Scholar

Gao Y, Gu S, Jia F, Wang Q, Gao G. „All-in-one” hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer. Chemical Engineering Journal. 2020;398:125555. GaoY GuS JiaF WangQ GaoG „All-in-one” hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer Chemical Engineering Journal 2020 398 125555 10.1016/j.cej.2020.125555 Search in Google Scholar

Pourjavadi A, Kurdtabar M. Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics. European Polymer Journa. 2007;73(3):877–889. DOI: 10.1016/j.cej.2020.125555. PourjavadiA KurdtabarM Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics European Polymer Journa 2007 73 3 877 889 10.1016/j.cej.2020.125555 Open DOISearch in Google Scholar

Noppakundilograt S, Choopromkaw S, Kiatkamjornwong S. Hydrolyzed collagen-grafted-poly[(acrylic acid)-co-(methacrylic acid)] hydrogel for drug delivery. Journal of Polymer Applied Polymer Science. 2018;135(1):1–11. NoppakundilogratS ChoopromkawS KiatkamjornwongS Hydrolyzed collagen-grafted-poly[(acrylic acid)-co-(methacrylic acid)] hydrogel for drug delivery Journal of Polymer Applied Polymer Science 2018 135 1 1 11 10.1002/app.45654 Search in Google Scholar

Ding C, Zhang M, Ma M, Zheng Z, Yang O, Feng R. Thermal and pH dual-responsive hydrogels based on semi-interpenetrating network of poly(N-isopropylacrylamide) and collagen nanofibrils. Polymer International. 2019;68(8):1468–1477. DingC ZhangM MaM ZhengZ YangO FengR Thermal and pH dual-responsive hydrogels based on semi-interpenetrating network of poly(N-isopropylacrylamide) and collagen nanofibrils Polymer International 2019 68 8 1468 1477 10.1002/pi.5852 Search in Google Scholar

Tshai KY, Chin MH, Lim SS, Loh HS, Yong EHN, Nuge T. Fish Scale Collagen Functionalized Thermo-Responsive Nanofibres. KEM 2020;846:189–94. TshaiKY ChinMH LimSS LohHS YongEHN NugeT Fish Scale Collagen Functionalized Thermo-Responsive Nanofibres KEM 2020 846 189 94 10.4028/www.scientific.net/KEM.846.189 Search in Google Scholar

Ravichandrana R, Astrandb C, Patrac HK, Turnerc APF, Chotteaub V and Phopase J. Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications. Royal Society of Chemistry. 2017;7:21068–21078. RavichandranaR AstrandbC PatracHK TurnercAPF ChotteaubV PhopaseJ Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications Royal Society of Chemistry 2017 7 21068 21078 10.1039/C7RA02927F Search in Google Scholar

Zhang J, Deng F, Liu W, Huang Y, Tu X, Kou H, He L, Wei B, Xu C, Wang H. Temperature responsive collagen-PNIPAAm conjugate: Preparation and fibrillogenesis. New Journal of Chemistry 2020;44:21261–21270. DOI: 10.1039/D0NJ04823B. ZhangJ DengF LiuW HuangY TuX KouH HeL WeiB XuC WangH Temperature responsive collagen-PNIPAAm conjugate: Preparation and fibrillogenesis New Journal of Chemistry 2020 44 21261 21270 10.1039/D0NJ04823B Open DOISearch in Google Scholar

Durkut S, Elçin YM. Synthesis and characterization of thermo-sensitive poly(N-vinylcaprolactam)-g-collagen. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(8):1665–1674. DOI: 10.1080/21691401.2016.1276925. DurkutS ElçinYM Synthesis and characterization of thermo-sensitive poly(N-vinylcaprolactam)-g-collagen Artificial Cells, Nanomedicine, and Biotechnology 2017 45 8 1665 1674 10.1080/21691401.2016.1276925 28078915 Open DOISearch in Google Scholar

Lee EJ, Kim YH. Synthesis and thermo-responsive properties of chitosan-g-poly (N-isopropylacrylamide) and HTCC-gpoly(N-isopropylacrylamide) copolymers. Fibers Polymers. 2010;11:164–169. DOI: 10.1007/s12221-010-0164-z. LeeEJ KimYH Synthesis and thermo-responsive properties of chitosan-g-poly (N-isopropylacrylamide) and HTCC-gpoly(N-isopropylacrylamide) copolymers Fibers Polymers 2010 11 164 169 10.1007/s12221-010-0164-z Open DOISearch in Google Scholar

Curcio M, Puoci F, Spizzirri UG, Iemma F, Cirillo G, Parisi OI, Picci N. Negative Thermoresponsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device. AAPS PharmSciTech. 2010;11(2):652–662. DOI: 10.1208/s12249-010-9429-5. CurcioM PuociF SpizzirriUG IemmaF CirilloG ParisiOI PicciN Negative Thermoresponsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device AAPS PharmSciTech 2010 11 2 652 662 10.1208/s12249-010-9429-5 290232220405255 Open DOISearch in Google Scholar

Zhu Q, Gong Y, Guo T, Deng Y, Ji J, Wang B, Hao S. Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. International Journal of Pharmaceutics. 2019;566:342–351. DOI: 10.1016/j.ijpharm.2019.05.076. ZhuQ GongY GuoT DengY JiJ WangB HaoS Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage International Journal of Pharmaceutics 2019 566 342 351 10.1016/j.ijpharm.2019.05.076 31158456 Open DOISearch in Google Scholar

Sun K, Guo J, He Y, Song P, Xiong Y, Wang R M. Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors. Journal of Biomaterials Science, Polymer Edition. 2016;18:1926–1940. DOI: 10.1080/09205063.2016.1239955. SunK GuoJ HeY SongP XiongY WangR M Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors Journal of Biomaterials Science, Polymer Edition 2016 18 1926 1940 10.1080/09205063.2016.1239955 27659945 Open DOISearch in Google Scholar

Eslahi N, Simchi, A, Mehrjoo M, Shokrgozarc MA, Bonakdarc S. Hybrid crosslinked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Advances. 2016;6:62944–62957. DOI: 10.1039/D0BM01403F. EslahiN SimchiA MehrjooM ShokrgozarcMA BonakdarcS Hybrid crosslinked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability RSC Advances 2016 6 62944 62957 10.1039/D0BM01403F 33443245 Open DOISearch in Google Scholar

Villanueva ME, Cuestasc ML, Pérezd CL, Campo V, Orto D, Copello GJ. Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. Journal of Colloid and Interface Science. 2019;536:372–380. DOI: 10.1016/j.jcis.2018.10.067. VillanuevaME CuestascML PérezdCL CampoV OrtoD CopelloGJ Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel Journal of Colloid and Interface Science 2019 536 372 380 10.1016/j.jcis.2018.10.067 30380436 Open DOISearch in Google Scholar