Open Access

Airborne laser scanning as a basis for forest mensuration


Cite

Adermann, V. 2010. Development of Estonian National Forest Inventory. – Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (eds.). National Forest Inventories: Pathways for Common Reporting. Heidelberg, Springer, 171–184.AdermannV.2010Development of Estonian National Forest InventoryTomppoE.GschwantnerT.LawrenceM.McRobertsR.E.(eds.).National Forest Inventories: Pathways for Common ReportingHeidelbergSpringer171184Search in Google Scholar

Arumäe, T. 2020. Estimating forest variables using airborne lidar measurements in hemi-boreal forests. – Doctoral thesis. Tartu, Estonian University of Life Sciences. 195 pp. http://dspace.emu.ee/xmlui/handle/10492/5764.ArumäeT.2020Estimating forest variables using airborne lidar measurements in hemi-boreal forestsDoctoral thesis.TartuEstonian University of Life Sciences195 pp. http://dspace.emu.ee/xmlui/handle/10492/5764.Search in Google Scholar

Arumäe, T., Lang, M. 2013. A simple model to estimate forest canopy base height from airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 58, 46–56. (In Estonian with English summary).ArumäeT.LangM.2013A simple model to estimate forest canopy base height from airborne lidar dataForestry Studies / Metsanduslikud Uurimused584656(In Estonian with English summary).10.2478/fsmu-2013-0005Search in Google Scholar

Arumäe, T., Lang, M. 2016. ALS-based wood volume models of forest stands and comparison with forest inventory data. – Forestry Studies / Metsanduslikud Uurimused, 64, 5–16. https://doi.org/10.1515/fsmu-2016-0001. (In Estonian with English summary).ArumäeT.LangM.2016ALS-based wood volume models of forest stands and comparison with forest inventory dataForestry Studies / Metsanduslikud Uurimused64516https://doi.org/10.1515/fsmu-2016-0001. (In Estonian with English summary).10.1515/fsmu-2016-0001Search in Google Scholar

Arumäe, T., Lang, M. 2018. Estimation of canopy cover in dense mixed-species forests using airborne lidar data. – European Journal of Remote Sensing, 51(1), 132–141. https://doi.org/10.1080/22797254.2017.1411169.ArumäeT.LangM.2018Estimation of canopy cover in dense mixed-species forests using airborne lidar dataEuropean Journal of Remote Sensing511132141https://doi.org/10.1080/22797254.2017.1411169.10.1080/22797254.2017.1411169Search in Google Scholar

Arumäe, T., Lang, M., Laarmann, D. 2020. Thinning- and tree-growth-caused changes in canopy cover and stand height and their estimation using low-density bitemporal airborne lidar measurements – a case study in hemi-boreal forests. – European Journal of Remote Sensing, 53(1), 113–123. https://doi.org/10.1080/22797254.2020.1734969.ArumäeT.LangM.LaarmannD.2020Thinning- and tree-growth-caused changes in canopy cover and stand height and their estimation using low-density bitemporal airborne lidar measurements – a case study in hemi-boreal forestsEuropean Journal of Remote Sensing531113123https://doi.org/10.1080/22797254.2020.1734969.10.1080/22797254.2020.1734969Search in Google Scholar

Ayrey, E., Hayes, D.J. 2018. The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory. – Remote Sensing, 10, 649. https://doi.org/10.3390/rs10040649.AyreyE.HayesD.J.2018The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventoryRemote Sensing10649https://doi.org/10.3390/rs10040649.10.3390/rs10040649Search in Google Scholar

Balsi, M., Esposito, S., Fallavollita, P., Nardinocchi, C. 2018. Single-tree detection in high-density LiDAR data from UAV-based survey. – European Journal of Remote Sensing, 51, 679–692. https://doi.org/10.1080/22797254.2018.1474722.BalsiM.EspositoS.FallavollitaP.NardinocchiC.2018Single-tree detection in high-density LiDAR data from UAV-based surveyEuropean Journal of Remote Sensing51679692https://doi.org/10.1080/22797254.2018.1474722.10.1080/22797254.2018.1474722Search in Google Scholar

Cosenza, D.N., Korhonen, L., Maltamo, M., Packalen, P., Strunk, J.L., Næsset, E., Gobakken, T., Soares, P., Tomé, M. 2020. Comparison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction of growing stock. – Forestry, 2020, 1–13. https://doi.org/10.1093/forestry/cpaa034.CosenzaD.N.KorhonenL.MaltamoM.PackalenP.StrunkJ.L.NæssetE.GobakkenT.SoaresP.ToméM.2020Comparison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction of growing stockForestry2020113https://doi.org/10.1093/forestry/cpaa034.10.1093/forestry/cpaa034Search in Google Scholar

Guerra-Hernández, J., Arellano-Pérez, S., González-Ferreiro, E., Pascual, A., Altelarrea, V.S., Ruiz-González, A.D., Álvarez-González, J.G. 2021. Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data. – Forest Ecology and Management, 481, 118690. https://doi.org/10.1016/j.foreco.2020.118690.Guerra-HernándezJ.Arellano-PérezS.González-FerreiroE.PascualA.AltelarreaV.S.Ruiz-GonzálezA.D.Álvarez-GonzálezJ.G.2021Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental dataForest Ecology and Management481118690. https://doi.org/10.1016/j.foreco.2020.118690.10.1016/j.foreco.2020.118690Search in Google Scholar

Jakubauskas, M., Price, K.P. 1997. Empirical relationships between structural and spectral factors of Yellowstone lodgepole pine forests. – Photogrammetric Engineering and Remote Sensing, 63, 1375–1381.JakubauskasM.PriceK.P.1997Empirical relationships between structural and spectral factors of Yellowstone lodgepole pine forestsPhotogrammetric Engineering and Remote Sensing6313751381Search in Google Scholar

Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2015. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsanduslikud Uurimused, 62, 26–38. https://doi.org/10.1515/fsmu-2015-0003.KivisteA.HordoM.KangurA.KardakovA.LaarmannD.LillelehtA.MetslaidS.SimsA.KorjusH.2015Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research PlotsForestry Studies / Metsanduslikud Uurimused622638https://doi.org/10.1515/fsmu-2015-0003.10.1515/fsmu-2015-0003Search in Google Scholar

Korpela, I., Ørka, H.O., Maltamo, M., Tokola, T., Hyyppä, J. 2010. Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. – Silva Fennica, 44(2), 319–339.KorpelaI.ØrkaH.O.MaltamoM.TokolaT.HyyppäJ.2010Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor typeSilva Fennica44231933910.14214/sf.156Search in Google Scholar

Kotivuori, E., Korhonen, L., Packalen, P. 2016. Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. – Silva Fennica, 50, 1567. http://dx.doi.org/10.14214/sf.1567.KotivuoriE.KorhonenL.PackalenP.2016Nationwide airborne laser scanning based models for volume, biomass and dominant height in FinlandSilva Fennica501567http://dx.doi.org/10.14214/sf.1567.10.14214/sf.1567Search in Google Scholar

Kotivuori, E., Maltamo, M., Korhonen, L., Packalen, P. 2018. Calibration of nationwide airborne laser scanning based stem volume models. – Remote Sensing of Environment, 210, 179–192.KotivuoriE.MaltamoM.KorhonenL.PackalenP.2018Calibration of nationwide airborne laser scanning based stem volume modelsRemote Sensing of Environment21017919210.1016/j.rse.2018.02.069Search in Google Scholar

Krigul, T. 1972. Forest Mensuration. (Metsatakseerimine). Tallinn, Valgus. 359 pp. (In Estonian).KrigulT.1972Forest Mensuration. (Metsatakseerimine)TallinnValgus359 pp. (In Estonian).Search in Google Scholar

Kuusk, A., Kuusk, J., Lang, M. 2019. A statistical forest reflectance model. – Remote Sensing, 11, 2749. https://doi.org/10.3390/rs11232749.KuuskA.KuuskJ.LangM.2019A statistical forest reflectance modelRemote Sensing112749https://doi.org/10.3390/rs11232749.10.3390/rs11232749Search in Google Scholar

Laarmann, D., Korjus, H., Sims, A., Stanturf, J., Kiviste, A., Köster, K. 2009. Analysis of forest naturalness and tree mortality patterns in Estonia. – Forest Ecology and Management, 258, 187–195.LaarmannD.KorjusH.SimsA.StanturfJ.KivisteA.KösterK.2009Analysis of forest naturalness and tree mortality patterns in EstoniaForest Ecology and Management25818719510.1016/j.foreco.2009.07.014Search in Google Scholar

Lang, M., Arumäe, T. 2018. Assessment of forest thinning intensity using sparse point clouds from repeated airborne lidar measurements. – Forestry Studies / Metsanduslikud Uurimused, 68, 40–50. https://doi.org/10.2478/fsmu-2018-0004.LangM.ArumäeT.2018Assessment of forest thinning intensity using sparse point clouds from repeated airborne lidar measurementsForestry Studies / Metsanduslikud Uurimused684050https://doi.org/10.2478/fsmu-2018-0004.10.2478/fsmu-2018-0004Search in Google Scholar

Lang, M., Arumäe, T., Anniste, J. 2012. Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia. – Forestry Studies / Metsanduslikud Uurimused, 56, 27–41. https://doi.org/10.2478/v10132-012-0003-7. (In Estonian with English summary).LangM.ArumäeT.AnnisteJ.2012Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, EstoniaForestry Studies / Metsanduslikud Uurimused562741https://doi.org/10.2478/v10132-012-0003-7. (In Estonian with English summary).10.2478/v10132-012-0003-7Search in Google Scholar

Lang, M., Arumäe, T., Lükk, T., Sims, A. 2014. Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 61, 47–68. https://doi.org/10.2478/fsmu-2014-0010.LangM.ArumäeT.LükkT.SimsA.2014Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar dataForestry Studies / Metsanduslikud Uurimused614768https://doi.org/10.2478/fsmu-2014-0010.10.2478/fsmu-2014-0010Search in Google Scholar

Lang, M., Arumäe, T., Laarmann, D., Kiviste, A. 2017. Estimation of change in forest height growth. – Forestry Studies / Metsanduslikud Uurimused, 67, 5–16. https://doi.org/10.1515/fsmu-2017-0009. (In Estonian with English summary).LangM.ArumäeT.LaarmannD.KivisteA.2017Estimation of change in forest height growthForestry Studies / Metsanduslikud Uurimused67516https://doi.org/10.1515/fsmu-2017-0009. (In Estonian with English summary).10.1515/fsmu-2017-0009Search in Google Scholar

Lang, M., Kaha, M., Laarmann, D., Sims, A. 2018. Construction of tree species composition map of Estonia using multispectral satellite images, soil map and a random forest algorithm. – Forestry Studies / Metsanduslikud Uurimused, 68, 5–24. https://doi.org/10.2478/fsmu-2018-0001.LangM.KahaM.LaarmannD.SimsA.2018Construction of tree species composition map of Estonia using multispectral satellite images, soil map and a random forest algorithmForestry Studies / Metsanduslikud Uurimused68524https://doi.org/10.2478/fsmu-2018-0001.10.2478/fsmu-2018-0001Search in Google Scholar

Large, A.R.G., Heritage, G.L. 2009. Laser scanning – evolution of the discipline. – Heritage, G.L., Large, A.R.G. (eds.). Laser Scanning for the Environmental Sciences. Chichester, West Sussex, John Wiley & Sons, 1–20. https://doi.org/10.1002/9781444311952.ch1.LargeA.R.G.HeritageG.L.2009Laser scanning – evolution of the disciplineHeritageG.L.LargeA.R.G.(eds.).Laser Scanning for the Environmental SciencesChichester, West SussexJohn Wiley & Sons120https://doi.org/10.1002/9781444311952.ch1.10.1002/9781444311952.ch1Search in Google Scholar

Maa-amet. 2018. Aerial laserscanning heightpoints. (Aerolaserskaneerimise kõrguspunktid). [WWW document]. – URL https://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/Topograafilised-andmed/Korgusandmed/Aerolaserskaneerimise-korguspunktid-p499.html. [Accessed 16 November 2020]. (In Estonian).Maa-amet2018Aerial laserscanning heightpoints. (Aerolaserskaneerimise kõrguspunktid)[WWW document]. – URL https://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/Topograafilised-andmed/Korgusandmed/Aerolaserskaneerimise-korguspunktid-p499.html. [Accessed 16 November 2020]. (In Estonian).Search in Google Scholar

McRoberts, R.E., Tomppo, E.O. 2007. Remote sensing support for national forest inventories. – Remote Sensing of Environment, 110, 412–419. https://doi.org/10.1016/j.rse.2006.09.034.McRobertsR.E.TomppoE.O.2007Remote sensing support for national forest inventoriesRemote Sensing of Environment110412419https://doi.org/10.1016/j.rse.2006.09.034.10.1016/j.rse.2006.09.034Search in Google Scholar

Metsakorralduse. 2018. Forest inventory act. (Metsa korraldamise juhend). – RT I, 31.08.2018, 8. (In Estonian).Metsakorralduse2018Forest inventory act. (Metsa korraldamise juhend)RT I31.08.2018, 8. (In Estonian).Search in Google Scholar

Metsaregister. 2020. Forest register. (Metsaregister). [WWW document]. – URL https://register.metsad.ee/. [Accessed 26 November 2020]. (In Estonian).Metsaregister2020Forest register. (Metsaregister)[WWW document]. – URL https://register.metsad.ee/. [Accessed 26 November 2020]. (In Estonian).Search in Google Scholar

Morsdorf, F., Kötz, B., Meier, E., Itten, K.I., Allgöwer, B. 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. – Remote Sensing of Environment, 104, 50–61. https://doi.org/10.1016/j.rse.2006.04.019.MorsdorfF.KötzB.MeierE.IttenK.I.AllgöwerB.2006Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fractionRemote Sensing of Environment1045061https://doi.org/10.1016/j.rse.2006.04.019.10.1016/j.rse.2006.04.019Search in Google Scholar

Müller, J., Vierling, K. 2014. Assessing biodiversity by airborne laser scanning. – Maltamo M., Næsset E., Vauhkonen J. (eds.). Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Dordrecht, Springer, 357–374. https://doi.org/10.1007/978-94-017-8663-8_18.MüllerJ.VierlingK.2014Assessing biodiversity by airborne laser scanningMaltamoM.NæssetE.VauhkonenJ.(eds.).Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems27DordrechtSpringer357374https://doi.org/10.1007/978-94-017-8663-8_18.10.1007/978-94-017-8663-8_18Search in Google Scholar

Nagendra, H. 2001. Using remote sensing to assess biodiversity. – International Journal of Remote Sensing, 22(12), 2377–2400.NagendraH.2001Using remote sensing to assess biodiversityInternational Journal of Remote Sensing22122377240010.1080/01431160117096Search in Google Scholar

Næsset, E. 1997. Determination of mean tree height of forest stands using airborne laser scanner data. – ISPRS Journal of Photogrammetry and Remote Sensing, 52, 49–56.NæssetE.1997Determination of mean tree height of forest stands using airborne laser scanner dataISPRS Journal of Photogrammetry and Remote Sensing52495610.1016/S0924-2716(97)83000-6Search in Google Scholar

Noordermeer, L., Bollandsås, O.M., Ørka, H.O., Næsset, E., Gobakken, T. 2019a. Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories. – Remote Sensing of Environment, 226, 26–37. https://doi.org/10.1016/j.rse.2019.03.027.NoordermeerL.BollandsåsO.M.ØrkaH.O.NæssetE.GobakkenT.2019aComparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventoriesRemote Sensing of Environment2262637https://doi.org/10.1016/j.rse.2019.03.027.10.1016/j.rse.2019.03.027Search in Google Scholar

Noordermeer, L., Økseter, R., Ørka, H.O., Gobakken, T., Næsset, E., Bollandsås, O.M. 2019b. Classification of forest change by using bitemporal airborne laser scanner data. – Remote Sensing, 11(18), 2145. https://doi.org/10.3390/rs11182145.NoordermeerL.ØkseterR.ØrkaH.O.GobakkenT.NæssetE.BollandsåsO.M.2019bClassification of forest change by using bitemporal airborne laser scanner dataRemote Sensing11182145https://doi.org/10.3390/rs11182145.10.3390/rs11182145Search in Google Scholar

Noordermeer, L., Gobakken, T., Næsset, E., Bollandsås, O.M. 2020. Predicting and mapping site index in operational forest inventories using bitemporal airborne laser scanner data. – Forest Ecology and Management, 457, 117768. https://doi.org/10.1016/j.foreco.2019.117768.NoordermeerL.GobakkenT.NæssetE.BollandsåsO.M.2020Predicting and mapping site index in operational forest inventories using bitemporal airborne laser scanner dataForest Ecology and Management457117768. https://doi.org/10.1016/j.foreco.2019.117768.10.1016/j.foreco.2019.117768Search in Google Scholar

Põldveer, E., Korjus, H., Kiviste, A., Kangur, A., Paluots, T., Laarmann, D. 2020. Assessment of spatial stand structure of hemiboreal conifer dominated forests according to different levels of naturalness. – Ecological Indicators, 110, 105944. https://doi.org/10.1016/j.ecolind.2019.105944.PõldveerE.KorjusH.KivisteA.KangurA.PaluotsT.LaarmannD.2020Assessment of spatial stand structure of hemiboreal conifer dominated forests according to different levels of naturalnessEcological Indicators110105944. https://doi.org/10.1016/j.ecolind.2019.105944.10.1016/j.ecolind.2019.105944Search in Google Scholar

Xu, Q., Li, B., Maltamo, M., Tokola, T., Hou, Z. 2019. Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning. – Forest Ecology and Management, 434, 205–212. https://doi.org/10.1016/j.foreco.2018.12.020.XuQ.LiB.MaltamoM.TokolaT.HouZ.2019Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanningForest Ecology and Management434205212https://doi.org/10.1016/j.foreco.2018.12.020.10.1016/j.foreco.2018.12.020Search in Google Scholar

eISSN:
1736-8723
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other