Remote-sensing support for the Estonian National Forest Inventory, facilitating the construction of maps for forest height, standing-wood volume, and tree species composition
, , , , , , , , and
Mar 11, 2021
About this article
Article Category: Research paper
Published Online: Mar 11, 2021
Page range: 77 - 97
Received: Jul 19, 2020
Accepted: Nov 23, 2020
DOI: https://doi.org/10.2478/fsmu-2020-0016
Keywords
© 2020 Mait Lang et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Predicted dominant species and field observations on 6,239 NFI sample plots_Tabel 5_ Prognoositud enamuspuuliik võrrelduna 6239 SMI proovitüki andmetega_
NFI / | Predicted dominant species | ||||||
---|---|---|---|---|---|---|---|
KS | KU | MA | LV | LM | HB | XK | |
KS | 1,110 | 186 | 114 | 153 | 137 | 106 | 16 |
KU | 201 | 694 | 162 | 47 | 12 | 37 | 6 |
MA | 173 | 211 | 1,532 | 4 | 8 | 15 | 2 |
LV | 93 | 25 | 3 | 334 | 14 | 23 | 7 |
LM | 67 | 10 | 7 | 25 | 123 | 20 | 4 |
HB | 81 | 34 | 5 | 65 | 23 | 108 | 13 |
XK | 47 | 13 | 15 | 72 | 30 | 35 | 17 |
Standing-wood volume M (m3 ha−1) prediction errors under model (2), by dominant tree species, with ALS data distinguished according to spring (SP) and summer (SU)_Tabel 3_ Esimese rinde tüvemahu M (m3 ha−1) prognoosmudeli (2) vead peapuuliikide järgi_ Eristatud on suvised (SU) ja kevadised (SP) laserskaneerimise lennud_
ALS data | Target area | Variable | Dominant species | ||||||
---|---|---|---|---|---|---|---|---|---|
HB | KS | KU | LM | LV | MA | XK | |||
SP 2017 | SW | 190 | 161 | 179 | 263 | 152 | 250 | 233 | |
SP 2017 | SW | RSE | 77 | 67 | 70 | 116 | 96 | 83 | 81 |
SP 2017 | SW | MRE | −37 | 11 | 18 | −45 | 25 | −1 | −59 |
SP 2017 | SW | N | 22 | 93 | 43 | 13 | 7 | 106 | 7 |
SU 2017 | SE | 265 | 190 | 287 | 331 | 199 | 302 | 87 | |
SU 2017 | SE | RSE | 102 | 92 | 106 | 90 | 76 | 98 | 73 |
SU 2017 | SE | MRE | −3 | 37 | −13 | −51 | 22 | −26 | 57 |
SU 2017 | SE | N | 18 | 83 | 57 | 8 | 18 | 92 | 4 |
SP 2018 | NE | 157 | 197 | 235 | 188 | 145 | 237 | 166 | |
SP 2018 | NE | RSE | 95 | 60 | 73 | 78 | 53 | 56 | 30 |
SP 2018 | NE | MRE | −37 | −3 | 6 | −26 | −9 | 10 | −26 |
SP 2018 | NE | N | 19 | 59 | 66 | 10 | 31 | 120 | 3 |
SU 2018 | NW | 239 | 162 | 248 | 314 | 158 | 211 | 235 | |
SU 2018 | NW | RSE | 104 | 59 | 91 | 125 | 59 | 72 | 144 |
SU 2018 | NW | MRE | 54 | 31 | −29 | −17 | 12 | −24 | 144 |
SU 2018 | NW | N | 9 | 99 | 54 | 16 | 36 | 93 | 1 |
Parameters for the forest-height H (dm) prediction model (1)_ ALS data are from spring (SP) and summer (SU), with RSE the model residual standard error, R2 the coefficient of determination, and DF the number of degrees of freedom_ Insignificant values (p > 0_05) are in italics_Tabel 1_ Metsa kõrguse H (dm) prognoosmudeli (1) parameetrid_ Eristatud on suvised (SU) ja kevadised (SP) laserskaneerimise lennud_ RSE on mudeli jääkhälve, R2 on determinatsioonikordaja ja DF on vabadusastmete arv_ Mitteolulised väärtused (p > 0,05) on kursiivis_
ALS flight | Block | Model parameters | ||||
---|---|---|---|---|---|---|
RSE (dm) | R2 % | DF | ||||
SP 2017 | SW | 9.05 | 11.86 | 24 | 89.5 | 292 |
SU 2017 | SE | 6.09 | 11.58 | 21 | 94.7 | 281 |
SP 2018 | NE | 13.80 | 11.47 | 17 | 94.8 | 313 |
SU 2018 | NW | 12.07 | 21 | 91.8 | 312 |
The average difference between predicted forest height Ĥ (m) and standing-wood volume Mˆ(m3 ha-1)\hat M\left( {{{\rm{m}}^3}\;{\rm{h}}{{\rm{a}}^{ - 1}}} \right) in the case of both evergreen (EGR) and deciduous (DEC) stands, upon comparing ALS springtime (SP) against summer (SU) data_Tabel 4_ Prognoositud kõrguse Ĥ (m) ja esimese rinde tüvemahuMˆ(m3 ha-1)\hat M\left( {{m^3}\;h{a^{ - 1}}} \right)keskmine erinevus okaspuupuistutes (EGR) ja lehtpuupuistutes (DEC) kasutades suvised (SU) ja kevadisi (SP) laser-skaneerimise andmeid_
Block SP | Block SU | ||||
---|---|---|---|---|---|
EGR | DEC | EGR | DEC | ||
SW | SE | 0.53 | −0.90 | 34.5 | −46.5 |
NE | NW | 0.13 | −0.71 | 40.4 | −38.0 |
Parameters for the standing-wood volume M (m3 ha−1) prediction model (2) for the upper layer_ ALS data are from springtime (SP) and summer (SU)_ RSE is the model residual standard error, R2 the coefficient of determination, and DF the number of degrees of freedom_ Insignificant values (p > 0_05) are in italics_Tabel 2_ Esimese rinde tüvemahu M (m3 ha−1) prognoosmudeli (2) parameetrid_ Eristatud on suvised (SU) ja kevadised (SP) laserskaneerimise lennud_ RSE on mudeli jääkhälve, R2 on determinatsioonikordaja ja DF on vabadusastmete arv_ Mitteolulised väärtused (p > 0_05) on kursiivis_
ALS flight | Model parameters | ||||||
---|---|---|---|---|---|---|---|
RSE (m3 ha−1) | R2 | DF | |||||
SP 2017 | 1.438 | 1.264 | 0.416 | 78.6 | 84.2 | 287 | |
SU 2017 | 1.452 | 0.861 | 97.0 | 85.2 | 276 | ||
SP 2018 | 1.277 | 1.233 | 0.454 | 65.7 | 91.7 | 308 | |
SU 2018 | 1.492 | 0.598 | 76.3 | 85.1 | 304 |