This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Public License.
Alan Baker. Transcendental Number Theory. Cambridge University Press, 1990.Search in Google Scholar
Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Open DOISearch in Google Scholar
Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and π as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76–87. ACM, 2016. doi:10.1145/2854065.2854072.Open DOISearch in Google Scholar
Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71–84, 2011.Search in Google Scholar
Manuel Eberl. The transcendence of e. Archive of Formal Proofs, 2017. https://isa-afp.org/entries/E_Transcendental.html, Formal proof development.Search in Google Scholar
Adolf Hurwitz. Beweis der Transcendenz der Zahl e. Mathematische Annalen, 43:220–221, 1893.Search in Google Scholar
Artur Korniłowicz. Di erentiability of polynomials over reals. Formalized Mathematics, 25(1):31–37, 2017. doi:10.1515/forma-2017-0002.Open DOISearch in Google Scholar
Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.Open DOISearch in Google Scholar
Artur Korniłowicz, Adam Naumowicz, and Adam Grabowski. All Liouville numbers are transcendental. Formalized Mathematics, 25(1):49–54, 2017. doi:10.1515/forma-2017-0004.Open DOISearch in Google Scholar
Serge Lang. Introduction to Transcendental Numbers. Addison-Wesley Pub. Co., 1966.Search in Google Scholar
Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019.Search in Google Scholar
Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings, pages 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79876-5 37.Open DOISearch in Google Scholar
Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–295, 2008. doi:10.2478/v10037-008-0035-x.Open DOISearch in Google Scholar
Christoph Schwarzweller. Field extensions and Kronecker’s construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.Open DOISearch in Google Scholar
Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. Formalized Mathematics, 31(1):287–298, 2023. doi:10.2478/forma-2023-0023.Open DOISearch in Google Scholar
Christoph Schwarzweller, Artur Korniłowicz, and Agnieszka Rowińska-Schwarzweller. Some algebraic properties of polynomial rings. Formalized Mathematics, 24(3):227–237, 2016. doi:10.1515/forma-2016-0019.Open DOISearch in Google Scholar
Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001.Open DOISearch in Google Scholar
Freek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/.Search in Google Scholar