Open Access

Native versus non-native Prosopis woody species: Which fertilize the soil better?

, , , , , ,  and   
Jan 28, 2025

Cite
Download Cover

Aguilera, A.G., Alpert, P., Dukes, J.S., Harrington, R., 2010. Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biological Invasions, 12: 1243–1252. 10.1007/s10530-009-9543-z Search in Google Scholar

Alizadeh, T., Habashi, H., Matinizadeh, M., Sadeghi, S., 2022. Investigating the enzyme activities and physicochemical properties of soil in the habitat of Prosopis cineraria (L.) Druce and P. juliflora (SW.) DC. Iranian Journal of Forest and Poplar Research, 30 (1): 57–69. DOI: 10.22092/IJFPR.2022.357166.2034 Search in Google Scholar

Baek, G., Kim, C., 2024. Litterfall, litter decomposition, and carbon storage of Pinus densiflora and Quercus variabilis stands in South Korea. Folia Oecologica, 51 (1): 39–46. https://doi.org/10.2478/foecol-2024-0004 Search in Google Scholar

Beck, K.G., Zimmerman, K., Schardt, J.D., Stone, J., Lukens, R.R., Reichard, S., Randall, J., Cangelosi, A.A., Cooper, D., Thompson, J.P., 2008. Invasive species defined in a policy context: recommendations from the Federal Invasive Species Advisory Committee. Invasive Plant Science and Management, 1: 414–421. DOI: 10.1614/IPSM-08-089.1 Search in Google Scholar

Bibi, S., Bibi, A., Al-Ghouti, M.A., Abu-Dieyeh, M.H., 2023. Allelopathic effects of the invasive Prosopis juliflora (Sw.) DC. on native plants: perspectives toward agrosystems. Agronomy, 13: 590. https://doi.org/10.3390/agronomy13020590 Search in Google Scholar

Bijani, A., Moslehi, M., Parvaresh, H., 2020. Effects of Prosopis cineraria (L.) Druce and Prosopis juliflora (SW.) DC on some chemical characteristics of soil. Iranian Journal of Forest, 12: 101–111. [cit. 2024-06-07]. https://www.ijf-isaforestry.ir/article_107500.html?lang=en Search in Google Scholar

Black, C., 1965. Methods of soil analysis. Part 2: Chemical and microbiological properties. Agronomy, part 2. Madison: American Society of Agronomy, p. 771–1572.[cit. 2024-05-31]. https://search.worldcat.org/en/title/454626992 Search in Google Scholar

Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x Search in Google Scholar

Cable, D.R., 1976. Twenty years of changes in grass production following mesquite control and reseeding. Rangeland Ecology & Management/Journal of Range Management Archives, 29: 286–289. DOI: 10.2307/3897083 Search in Google Scholar

Castillo-Figueroa, D.,2024. Litter mixture effects on decomposition change with forest succession and are influenced by time and soil fauna in tropical mountain Andes. Folia Oecologica, 51 (1): 1–17. https://doi.org/10.2478/foecol-2024-0001 Search in Google Scholar

Catovsky, S., Bazzaz, F., 2002. Feedbacks between canopy composition and seedling regeneration in mixed conifer broad‐leaved forests. Oikos, 98: 403–420. https://doi.org/10.1034/j.1600-0706.2002.980305.x Search in Google Scholar

Chodak, M., Niklinska, M., 2010. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biology and Fertility of Soils, 46: 555–566. https://doi.org/10.1007/s00374-010-0462-z Search in Google Scholar

Drake, S.J., Weltzin, J.F., Parr, P.D., 2003. Assessment of non-native invasive plant species on the United States Department of Energy Oak Ridge National 4 Environmental Research PARK. Castanea, 68: 15–30. [cit. 2024-05-05]. https://www.jstor.org/stable/4034154 Search in Google Scholar

El-Keblawy, A., Abdelfatah, M.A., 2014. Impacts of native and invasive exotic Prosopis congeners on soil properties and associated flora in the arid United Arab Emirates. Journal of Arid Environments, 100: 1–8. https://doi.org/10.1016/j.jaridenv.2013.10.001 Search in Google Scholar

El-Keblawy, A., Al-Rawai, A., 2007. Impacts of the invasive exotic Prosopis juliflora (Sw.) DC on the native flora and soils of the UAE. Plant Ecology, 190: 23–35. https://doi.org/10.1007/s11258-006-9188-2 Search in Google Scholar

Essl, F., Bacher, S., Blackburn, T.M., Booy, O., Brundu, G., Brunel, S., Cardoso, A., Eschen, R., Gallardo, B., Galil, B., Garcia-Berthou, E., Genovesi, P., Groom, Q., Harrower, C., Hulme, P.E., Katsanevakis, S., Kenis, M., Kuhn, I., Kumschick, S., Martinou, A.F., Nentwig, W., O’flynn, C., Pagad, S., Pergl, J., Pysek, P., Rabitsch, W., Richardson, D.M., Roques, A., Roy, H.E., Scalera, R., Schindler, S., Seebens, H., Vanderhoeven, S., Vila, M., Wilson, J R U., Zenetos, A., Eschke, J.M., 2015. Crossing frontiers in tackling pathways of biological invasions. BioScience, 65 (8): 769–782. https://doi.org/10.1093/biosci/biv082 Search in Google Scholar

Facelli, J.M., Carson, W.P., 1991. Heterogeneity of plant litter accumulation in successional communities. Bulletin of the Torrey Botanical Club, 118: 62–66. https://doi.org/10.2307/2996977 Search in Google Scholar

Farahi, M., Mofidi Chalan, M., Moghimi Nejad, F., Khatibi, R., Jahantab, E., 2014. Investigation on the effects of Haloxylon and Tamarix on soil properties in Niatak region of Sistan. Iranian Journal of Range and Desert Research, 21: 307–316. https://doi.org/10.22092/ijrdr.2015.11377 Search in Google Scholar

Ferguson, J.J., Rathinasabapathi, B., Chase, C.A., 2013. Allelopathy: how plants suppress other plants.HS944/hs186. EDIS, 2013 (3): 5 p. Search in Google Scholar

Follastad Shah, J., Harner, M., Tibbets, T., 2010. Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems. Ecosystems, 13: 46–61. https://doi.org/10.1007/s10021-009-9299-4 Search in Google Scholar

Hejda, M., Pysek, P., Jarosik, V., 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97: 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x Search in Google Scholar

Imani, F., Moradi, M., Basiri, R., 2016. The effect of Prosopis juliflora afforestation on soil physicochemical properties in sand dunes (Case study: Magran Shush). JWSS - Journal of Water and Soil Science (Isfahan University of Technology), 20: 173–184. DOI: 10.18869/acadpub.jstnar.20.77.173 Search in Google Scholar

Inderjit, Cahill, J.F., 2015. Linkages of plant–soil feedbacks and underlying invasion mechanisms. AoB Plants, 7: plv022. https://doi.org/10.1093/aobpla/plv022 Search in Google Scholar

Jia, G.-m., Cao, J., Wang, C., Wang, G., 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217: 117–125. https://doi.org/10.1016/j.foreco.2005.05.055 Search in Google Scholar

Kaur, R., Gonzales, W.L., Llambi, L.D., Soriano, P.J., Callaway, R.M., Rout, M.E., Gallaher, T.J., Inderjit, 2012. Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PLoS ONE, 7 (9): e44966. https://doi.org/10.1371/journal.pone.0044966 Search in Google Scholar

Kourtev, P.S., Ehrenfeld, J.G., Haggblom, M., 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83 (11): 3152–3166. https://doi.org/10.2307/3071850 Search in Google Scholar

Linders, T.E.W., Schaffner, U., Eschen, R., Abebe, A., Choge, S. K., Nigatu, L., Mbaabu, P.R., Shiferaw, H., Allan, E., 2019. Direct and indirect effects of invasive species: biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. Journal of Ecology, 107 (6): 2660–2672. https://doi.org/10.1111/1365-2745.13268 Search in Google Scholar

Mahdhi, M., Tounekti, T., Khemira, H., 2019. Effects of Prosopis juliflora on germination, plant growth of Sorghum bicolor, mycorrhiza and soil microbial properties. Allelopathy Journal, 46: 265–276. DOI: 10.26651/allelo.j/2019-46-2-1214 Search in Google Scholar

Moslehi, M., Habashi, H., Khormali, F., Ahmadi, A., Brunner, I., Zimmermann, S., 2019. Base cation dynamics in rainfall, throughfall, litterflow and soil solution under Oriental beech (Fagus orientalis Lipsky) trees in northern Iran. Annals of Forest Science, 76: 55. https://doi.org/10.1007/s13595-019-0837-8 Search in Google Scholar

Moslehi Jouybari, M., Bijani, A., Parvaresh, H., Shack-leton, R., Ahmadi, A., 2022. Effects of native and invasive Prosopis species on topsoil physiochemical properties in an arid riparian forest of Hormozgan Province, Iran. Journal of Arid Land, 14 (10): 1099–1108. https://doi.org/10.1007/s40333-022-0104-y Search in Google Scholar

Nelson, R.,1982. Carbonate and gypsum. In Methods of soil analysis. Part 2, Chemical and microbiological properties. Agronomy Monograph, 9. Madison, Wis.: American Society of Agronomy; Soil Science Society of America, p. 181–197. https://doi.org/10.2134/agronmonogr9.2.2ed.c11 Search in Google Scholar

Pasiecznik, N.M., Felker, P., Harris, P.J., Harsh, L., Cruz, G., Tewari, J., Cadoret, K., Maldonado, L.J., 2001. The Prosopis juliflora-Prosopis pallida complex: a monograph. Coventry, UK: HDRA. 162 p. [cit. 2024-05-16]. https://gardenorganic-assets.s3.eu-west2.amazonaws.com/documents/ProsopisMonographMainText.pdf Search in Google Scholar

Plaster, E.J., 1985. Soil science and management. Albany, NY: Delmar Publishers Inc. 454 p. [cit. 2024-05-21]. https://www.amazon.com/Soil-Science-Management-Edward-Plaster/dp/0840024320 Search in Google Scholar

Prasad, S., Baishya, R., 2019. Interactive effects of soil moisture and temperature on soil respiration under native and non-native tree species in semi-arid forest of Delhi, India. Tropical Ecology, 60: 252–260. https://doi.org/10.1007/s42965-019-00028-x Search in Google Scholar

Pysek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton, J.T., Dawson, W., Essl, F., Foxcroft, L.C., Genovesi, P., 2020. Scientists’ warning on invasive alien species. Biological Reviews, 95: 1511–1534. https://doi.org/10.1111/brv.12627 Search in Google Scholar

Raich, J.W., Tufekciogul, A., 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48: 71–90. https://doi.org/10.1023/A:1006112000616 Search in Google Scholar

Richarson, D.M., Pysek, P., Rejmanek, M., Barbour, M.G., Panetta, F.D., West, C.J., 2000. Naturalization and invasion of alien plants: concep, ts and definitions. Diversity and Distributions, 6: 93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x Search in Google Scholar

Shackleton, R.T., Le Maitre, D.C., Pasiecznik, N.M., Richarson, D.M., 2014. Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants, 6: plu027. https://doi.org/10.1093/aobpla/plu027 Search in Google Scholar

Sharifian, A., Niknahad–Gharmakher, H., Foladizada, M., Tabe, A., Shackleton, R.T., 2023. Socio‐ecological evidence highlights that native Prosopis species are better for arid land restoration than non‐ native ones. Restoration Ecology, 31: e13756. https://doi.org/10.1111/rec.13756 Search in Google Scholar

Shen, C., Wang, J., He, J.-Z., Yu, F.-H., Ge, Y., 2021. Plant diversity enhances soil fungal diversity and microbial resistance to plant invasion. Applied and Environmental Microbiology, 87: e00251-00221. Search in Google Scholar

Stonlnikova, E., Ananyeva, N., Chernova, O., 2011. The microbial biomass and its activity and structure in the soils of old forests in the European Russia. Eurasian Soil Science, 44: 437–452. https://doi.org/10.1134/S1064229311040107 Search in Google Scholar

Sundarapandian, S., Muthumperumal, C., Subashree, K., 2015. Biological invasion of vines, their impacts and management. In Parthasarathy, N. (ed.). Bio-diversity of lianas Vol. 5. Cham: Springer, p. 211–253. https://doi.org/10.1007/978-3-319-14592-1_12 Search in Google Scholar

Sundarapandian, S., Subashree, K., 2017. Status of invasive plants in Tamil Nadu, India: their impact and significance. In Plant biodiversity: monitoring, assessment and conservation, Wallingford: CABI, p. 371–387. DOI: https://doi.org/10.1079/9781780646947.0371 Search in Google Scholar

Thomas, G.W.,1982. Exchangeable cations. In Methods of soil analysis. Part 2, Chemical and microbiological properties. Agronomy Monograph, 9. Madison, Wis.: American Society of Agronomy; Soil Science Society of America, p. 159–165. Search in Google Scholar

Turbelin, A.J., Cuthbert, R.N., Essl, F., Haubrock, J.P., Ricciardi, A., Courchamp, F., 2023. Biological invasions are as costly as natural hazards. Perspectives in Ecology and Coservation, 21: 143–150. https://doi.org/10.1016/j.pecon.2023.03.002 Search in Google Scholar

Watts, D.B., Torbert, H.A., Feng, Y., Prior, S.A., 2010. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Science, 175: 474–486. DOI: 10.1097/SS.0b013e3181f7964f Search in Google Scholar

Zhang, Z., Liu, Y., Brunel, C., Van Kleunen, M., 2020. Soil-microorganism-mediated invasional meltdown in plants. Nature Ecology & Evolution, 4: 1612–1621. https://doi.org/10.1038/s41559-020-01311-0 Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, Life Sciences, other