[
Abt, K.F., Bock, W.F., 1998. Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriologica, 43 (4): 379–389.
]Search in Google Scholar
[
Ackerman, J.T., Eagles-Smith, C.A., Herzog, M.P., 2011. Bird mercury concentrations change rapidly as chicks age: toxicological risk is highest at hatching and fledging. Environmental Science and Technology, 45 (12): 5418–5425. https://doi.org/10.1021/es200647g
]Search in Google Scholar
[
Ackerman, J.T., Eagles-Smith, C.A., Herzog, M.P., Hartman, C.A., Peterson, S.H., Evers, D.C., Jackson, A.K., Elliott, J.E., Vander Pol, S.S., Bryan, C.E., 2016. Avian mercury exposure and toxicological risk across western North America: a synthesis. Science of the Total Environment, 568: 749–769. https://doi.org/10.1016/j.scitotenv.2016.03.071
]Search in Google Scholar
[
Ackerman, J.T., Hartman, C.A., Herzog, M.P., 2018. Mer cury contamination in resident and migrant songbirds and potential effects on body condition. Environmental Pollution, 246: 797–810. https://doi.org/10.1016/j.envpol.2018.11.060
]Search in Google Scholar
[
Adachi, K., Tainosho, Y., 2005. Single particle characterization of size-fractionated road sediments. Applied Geo-chemistry, 20: 849–859. https://doi.org/10.1016/j.apgeochem.2005.01.005
]Search in Google Scholar
[
Adachi, T., Yasutake, A., Hirayama, K., 1992. Influence of dietary protein levels on the fate of methylmercury and glutathione metabolism in mice. Toxicology, 72 (1): 17–26. https://doi.org/10.1016/0300-483X(92)90082-P
]Search in Google Scholar
[
Ajsuvakova, O.P., Tinkov, A.A., Aschner, M., Rocha, J.B., Michalke, B., Skalnaya, M.G., Bjørklund, G., 2020. Sulfhydryl groups as targets of mercury toxicity. Coordination Chemistry Reviews, 417: 213–343. https://doi.org/10.1016/j.ccr.2020.213343
]Search in Google Scholar
[
Ball, J.E., Jenks, R., Aubourg, D., 1998. An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment, 209: 243–254. https://doi.org/10.1016/S0048-9697(98)80115-0
]Search in Google Scholar
[
Ballová, Z., Janiga, M., Hančinský, R., 2019. Comparison of element concentrations (Ba, Mn, Pb, Sr, Zn) in the bones and teeth of wild ruminants from the West Carpathians and the Tian-Shan Mountains as indicators of air pollution. Atmosphere, 10: 64. https://doi.org/10.3390/atmos10020064
]Search in Google Scholar
[
Ballová, Z.K., Korec, F., Pinterová, K., 2020. Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians. Environmental Science and Pollution Research, 27 (29): 36411–36426. https://doi.org/10.1007/s11356-020-09654-8
]Search in Google Scholar
[
Bearhop, S., Thompson, D.R., Waldron, S., Russell, I.C., Alexander, G., Furness, R.W., 1999. Stable isotopes indicate the extent of freshwater feeding by cormorants Phalacrocorax carbo shot at inland fisheries in England. Journal of Applied Ecology, 36: 75–84. [cit. 2023-09-18]. https://www.jstor.org/stable/2655696
]Search in Google Scholar
[
Belcheva, M., Metcheva, R., Artinian, A., Nicolova, E., 1998. Assessment of toxic elements in the snow vole (Chionomys nivalis) and its food from Rila mountains. Observatioire de Montagne de Moussala, 7: 276–280.
]Search in Google Scholar
[
Beltran, R.S., Burns, J.M., Breed, G.A., 2018. Convergence of biannual moulting strategies across birds and mammals. Proceedings of the Royal Society B: Biological Sciences, 285: 20180318. https://doi.org/10.1098/rspb.2018.0318
]Search in Google Scholar
[
Betts, M.M., 1955. The food of titmice in oak woodland. Journal of Animal Ecology, 24 (2): 282–323. https://doi.org/10.2307/1715
]Search in Google Scholar
[
Bibby, C.J., Green, R.E., 1983. Food and fattening of migrating warblers in some French marshlands. Ringing & Migration, 4 (3): 175–184.
]Search in Google Scholar
[
Bibi, S., Khan, M.F., Rehman, A., Khurshid, S.J., 2019. The breeding biology with respect to ecology of the chiff-chaff Phylloscopus collybita in Chhajjian, Haripur. Kpk, Pakistan. Journal of Biodiversity and Endangered Species, 7 (2): 1000235.
]Search in Google Scholar
[
Bjørklund, G., Dadar, M., Mutter, J., Aaseth, J., 2017. The toxicology of mercury: current research and emerging trends. Environmental Research, 159: 545–554. https://doi.org/10.1016/j.envres.2017.08.051
]Search in Google Scholar
[
Chaplygina, A.B., Pakhomov, O.Y., Brygadyrenko, V.V., 2019. Trophic links of the song thrush (Turdus philomelos) in transformed forest ecosystems of North-Eastern Ukraine. Biosystems Diversity, 27 (1): 51–55.
]Search in Google Scholar
[
Condon, A.M., Cristol, D.A., 2009. Feather growth influences blood mercury level of young songbirds. Environmental Toxicology and Chemistry, 28 (2): 395–401. https://doi.org/10.1897/08-094.1
]Search in Google Scholar
[
Dahmardeh Behrooz, R., Poma, G., 2021. Evaluation of mercury contamination in Iranian wild cats through hair analysis. Biological Trace Element Research, 199: 166–172. https://doi.org/10.1007/s12011-020-02148-1
]Search in Google Scholar
[
Davies, P.W., Snow, D.W., 1965. Territory and food of the thrush. British Birds, 58 (5): 161–175.
]Search in Google Scholar
[
Del Hoyo, J., Elliott, A., Christie, D. (eds), 2005. Handbook of the birds of the world. Vol. 10. Cuckoo-Shrikes to Thrushes. Barcelona: Lynx Edicions. 895 p.
]Search in Google Scholar
[
Díaz, M., Illera, J.C., Atienza, J.C., 1998. Food resource matching by foraging tits Parus spp. during spring‐ summer in a Mediterranean mixed forest; evidence for an ideal free distribution. Ibis, 140 (4): 654–660. https://doi.org/10.1111/j.1474-919X.1998.tb04711.x
]Search in Google Scholar
[
Dietz, R., Born, E.W., Riget, F., Aubail, A., Sonne, C., Drimmie, R., Basu, N., 2011. Temporal trends and future predictions of mercury concentrations in North-west Greenland polar bear (Ursus maritimus) hair. Environmental Science and Technology, 45 (4): 1458–1465. https://doi.org/10.1021/es1028734
]Search in Google Scholar
[
Durkalec, M., Nawrocka, A., Żmudzki, J., Filipek, A., Niemcewicz, M., Posyniak, A., 2019. Concentration of mercury in the livers of small terrestrial rodents from rural areas in Poland. Molecules, 24 (22): 4108. https://doi.org/10.3390/molecules24224108
]Search in Google Scholar
[
Eagles-Smith, C.A., Herring, G., Johnson, B., Graw, R., 2016. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes. Environmental Pollution, 212: 279–289. https://doi.org/10.1016/j.envpol.2016.01.049
]Search in Google Scholar
[
Edmonds, S.T., Evers, D.C., Cristol, D.A., Mettke-Hofmann, C., Powell, L.L., McGann, A.J., Armiger, J.W., Lane, O.P., Tessler, D.F., Newell, P., Heyden, K., O’Driscoll, N.J., 2010. Geographic and seasonal variation in mercury exposure of the declining Rusty Blackbird. Condor, 112 (4): 789–799. https://doi.org/10.1525/cond.2010.100145
]Search in Google Scholar
[
EEA (European Environment Agency), 2011. Hazardous substances in Europe’s fresh and marine waters—an overview. EEA Technical Report, No 8/2011. Luxembourg: Publications Office. [cit. 2024-5-20]. https://www.eea.europa.eu/publications/hazardous-substances-in-europes-fresh
]Search in Google Scholar
[
Evers, D.C., Burgess, N., Champoux, L., Hoskins, B., Major, A., Goodale, W., Taylor, R., Poppenga, R., Daigle, T., 2005. Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology, 14: 193–222. https://doi.org/10.1007/s10646-004-6269-7
]Search in Google Scholar
[
Flegg, J.J.M., Cox, C.J., 1969. The moult of British blue tit and great tit populations. Bird Study, 16 (3): 147–157.
]Search in Google Scholar
[
Furtado, R., Pereira, M.E., Granadeiro, J.P., Catry, P., 2019. Body feather mercury and arsenic concentrations in five species of seabirds from the Falkland Islands. Marine Pollution Bulletin, 149: 110574.
]Search in Google Scholar
[
Gibb, J., 1954. Feeding ecology of tits, with notes on tree-creeper and goldcrest. Ibis, 96 (4): 513–543. https://doi.org/10.1111/j.1474-919X.1954.tb05476.x
]Search in Google Scholar
[
Gibb, J.A., 1960. Populations of tits and goldcrests and their food supply in pine plantations. Ibis, 102 (2): 163–208. https://doi.org/10.1111/j.1474-919X.1960.tb07112.x
]Search in Google Scholar
[
Gochfeld, M., 2003. Cases of mercury exposure, bioavail-ability, and absorption. Ecotoxicology and Environmental Safety, 56 (1): 174–179. https://doi.org/10.1016/S0147-6513(03)00060-5
]Search in Google Scholar
[
Graydon, J.A., St. Louis, V.L., Hintelmann, H., Lindberg, S.E., Sandilands, K.A., Rudd, J.W.M., Kelly, C.A., Hall, B.D., Mowat, L.D., 2008. Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science and Technology, 42: 8345−8351. https://doi.org/10.1021/es801056j
]Search in Google Scholar
[
Green, R., 1979. The ecology of wood mice (Apodemus sylvaticus) on arable farmland. Journal of Zoology, 188 (3): 357–377. https://doi.org/10.1111/j.1469-7998.1979.tb03422.x
]Search in Google Scholar
[
Greenberg, R., Pravosudov, V., Sterling, J., Kozlenko, A., Kontorshchikov, V., 1999. Tits, warblers, and finches: foliage-gleaning birds of Nearctic and Palearctic boreal forests. The Condor, 101 (2): 299–310. https://doi.org/10.2307/1369993
]Search in Google Scholar
[
Gruar, D., Peach, W., Taylor, R., 2003. Summer diet and body condition of Song Thrushes Turdus philomelos in stable and declining farmland populations. Ibis, 145 (4): 637–649. https://doi.org/10.1046/j.1474-919X.2003.00202.x
]Search in Google Scholar
[
Hartley, P.H.T., 1953. An ecological study of the feeding habits of the English titmice. Journal of Animal Ecology, 22 (2): 261–288. https://doi.org/10.2307/1817
]Search in Google Scholar
[
Hartman, C.A., Ackerman, J.T., Herring, G., Isanhart, J., Herzog, M., 2013. Marsh Wrens as bioindicators of mercury in wetlands of Great Salt Lake: do blood and feathers reflect site-specific exposure risk to bird reproduction? Environmental Science and Technology, 47 (12): 6597–6605. https://doi.org/10.1021/es400910x
]Search in Google Scholar
[
Hsiao, H.W., Ullrich, S.M., Tanton, T.W., 2011. Burdens of mercury in residents of Temirtaun, Kazakhstan. Science of the Total Environment, 409: 2272–2280. https://doi.org/10.1016/j.scitotenv.2009.12.040
]Search in Google Scholar
[
Illera, J.C., Atienza, J.C., 1995. Foraging shifts by the Blue Tit (Parus caeruleus) in relation to arthropod availability a mixed woodland during the spring-summer period. Ardeola, 42 (1): 39–48.
]Search in Google Scholar
[
Jackson, A.K., Evers, D.C., Adams, E.M., Cristol, D.A., Eagles-Smith, C., Edmonds, S.T., Gray, C.E., Hoskins, B., Lane, O.P., Sauer, A., Tear, T., 2015. Songbirds as sentinels of mercury in terrestrial habitats of eastern North America. Ecotoxicology, 24 (2): 453–467. https://doi.org/10.1007/s10646-014-1394-4
]Search in Google Scholar
[
Janiga, M., 2022. Biology of alpine accentor (Prunella collaris) VII. Mountain tourism, climbing and hiking – a cause of drastic synanthropy in alpine accentors in the last 200 years. Oecologia Montana, 31: 13–18.
]Search in Google Scholar
[
Janiga, M., Ballová, Z., Angelovičová, M., Korňan, J., 2019. The snow vole and Tatra marmot as different rodent bioindicators of lead pollution in an alpine environment: a hibernation effect. Polish Journal of Environmental Studies, 28: 1–11. https://doi.org/10.15244/pjoes/93293
]Search in Google Scholar
[
Janiga, M., Hrehová, Z., Dimitrov, K., Gerasimova, C., Lovari, S., 2016. Lead levels in the bones of snow voles Chionomys nivalis (Martins, 1842) (Rodentia) from European mountains: a comparative study of populations from the Tatra (Slovakia), Vitosha and Rila (Bulgaria). Acta Zoologica Bulgarica, 682: 291–295.
]Search in Google Scholar
[
Knutsen, C.J., Varian-Ramos, C.W., 2020. Explaining variation in Colorado songbird blood mercury using migratory behavior, foraging guild, and diet. Ecotoxicology, 29 (8): 1268–1280. https://doi.org/10.1007/s10646-019-02141-y
]Search in Google Scholar
[
Kolka, R.K., Nater, E.A., Grigal, D.F., Verry, E.S., 1999. Atmospheric inputs of mercury and organic carbon into a forested upland/bog watershed. Water, Air and Soil Pollution, 113: 273−294. https://doi.org/10.1023/A:1005020326683
]Search in Google Scholar
[
Korstian, J.M., Chumchal, M.M., Bennett, V.J., Hale, A.M., 2018. Mercury contamination in bats from the central United States. Environmental Toxicology and Chemistry, 37 (1): 160–165. https://doi.org/10.1002/etc.3940
]Search in Google Scholar
[
Krištín, A., 1989. Ernhärung der Nestlinge der syntopischen Arten Zilpzalp (Phylloscopus collybita) und Heckenbraunelle (Prunella modularis) [Diet of syntopic species chiffchaff (Phylloscopus collybita) and dunnock (Prunella)]. Folia Zoologica, 38 (4): 349–362.
]Search in Google Scholar
[
Kruuk, H., Conroy, J.W.H., Webb, A., 1997. Concentrations of mercury in otters (Lutra lutra L.) in Scotland in relation to rainfall. Environmental Pollution, 96 (1): 13–18. https://doi.org/10.1016/S0269-7491(97)00011-0
]Search in Google Scholar
[
Laursen, K., 1978. Interspecific relationships between some insectivorous passerine species, illustrated by their diet during spring migration. Ornis Scandinavica, 9: 178–192. https://doi.org/10.2307/3675880
]Search in Google Scholar
[
Laursen, K., 2022. The diet of insectivorous bird species differs when staging spring and autumn in the same habitat. Dansk Ornitologisk Forenings Tidsskrift, 116: 45–60.
]Search in Google Scholar
[
Maňkovská, B., Oszlányi, J., Barančok, P., 2008. Measurement of the atmosphere loading of the Slovak Carpathians using bryophyte. Ekológia (Bratislava), 27 (4): 339–350.
]Search in Google Scholar
[
Marchetti, C., Locatelli, D.P., Noordwijk, A.J.V., Baldaccini, N.E., 1998. The effects of prey size on diet dif ferentiation of seven passerine species at two spring stopover sites. Ibis, 140 (1): 25–34. https://doi.org/10.1111/j.1474-919X.1998.tb04537.x
]Search in Google Scholar
[
McLean, C.M., Koller, C.E., Rodger, J.C., MacFarlane, G.R., 2009. Mammalian hair as an accumulative bio-indicator of metal bioavailability in Australian terrestrial environments. Science of the Total Environment, 407 (11): 3588–3596. https://doi.org/10.1016/j.scitotenv.2009.01.038
]Search in Google Scholar
[
Metcheva, R., Teodorova, S., Topashka-Ancheva, M., 2003. A comparative analysis of the heavy metal loading of small mammals in different regions of Bulgaria I: monitoring points and bioaccumulation features. Ecotoxicology and Environmental Safety, 54: 176–187. https://doi.org/10.1016/S0147-6513(02)00051-9
]Search in Google Scholar
[
Montgomery, S.S.J., Montgomery, W.I, 1990. Intrapopulation variation in the diet of the wood mouse Apodemus sylvaticus. Journal of Zoology, 222 (4): 641–651. https://doi.org/10.1111/j.1469-7998.1990.tb06020.x
]Search in Google Scholar
[
Noël, M., Spence, J., Harris, K.A., Robbins, C.T., Fortin, J.K., Ross, P.S., Christensen, J.R., 2014. Grizzly bear hair reveals toxic exposure to mercury through salmon consumption. Environmental Science and Technology, 48 (13): 7560–7567. https://doi.org/10.1021/es500631g
]Search in Google Scholar
[
Norman, S.C., 1990. Factors influencing the onset of post‐ nuptial moult in Willow Warblers Phylloscopus trochilus. Ringing & Migration, 11 (2): 90–100. https://doi.org/10.1080/03078698.1990.9673967
]Search in Google Scholar
[
Palomo, L.J., Vargas, J.M., Pozueta, F.J., 1994. Superpositions of regular moults in Mus musculus. Acta Theriologica, 39 (4): 379–388.
]Search in Google Scholar
[
Pérez-Tris, J., Ramírez, Á., Tellería, J.L., 2003. Are Iberian Chiffchaffs Phylloscopus (collybita) brehmii long-distance migrants? An analysis of flight-related morphology. Bird Study, 50 (2): 146–152. https://doi.org/10.1080/00063650309461306
]Search in Google Scholar
[
Peterson, S.H., Ackerman, J.T., Crocker, D.E., Costa, D.P., 2018. Foraging and fasting can influence contaminant concentrations in animals: an example with mercury contamination in a free-ranging marine mammal. Proceedings of the Royal Society B: Biological Sciences, 285 (1872): 20172782. https://doi.org/10.1098/rspb.2017.2782
]Search in Google Scholar
[
Rimmer, C.C., McFarland, K.P., Evers, D.C., Miller, E.K., Aubry, Y., Busby, D., Taylor, R.J., 2005. Mercury levels in Bicknell’s thrush and other insectivorous passerine birds in montane forests of the northeastern United States and Canada. Ecotoxicology, 14: 223–240. https://doi.org/10.1007/s10646-004-6270-1
]Search in Google Scholar
[
Rimmer, C.C., Miller, E.K., McFarland, K.P., Taylor, R.J., Faccio, S.D., 2010. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology, 19: 697–709. https://doi.org/10.1007/-009-0443-x
]Search in Google Scholar
[
Risch, M.R., DeWild. J.F., Krabbenhoft, D.P., Kolka, R.K., Zhang, L., 2012. Litterfall mercury dry deposition in the eastern USA. Environmental Pollution, 161: 284− 290. https://doi.org/10.1016/j.envpol.2011.06.005
]Search in Google Scholar
[
Rodríguez Martín-Doimeadiós, R.C., Guzmán Bernardo, F.J., Rodríguez Fariñas, N., Jiménez Moreno, M., 2015. The role of earthworms in mercury pollution soil assessment. In Jiménez, E., Cabañas, B., Lefebvre, G. (eds). Environment, energy and climate change I: Environmental chemistry of pollutants and wastes. Cham: Springer, p. 159–174.
]Search in Google Scholar
[
Ryzhanovsky, V.N., 2017. Subspecies-specific features of molt in the common chiffchaff (Phylloscopus collybita L.) from Europe and Western Siberia. Russian Journal of Ecology, 48: 268–274. https://doi.org/10.1134/S1067413617030158
]Search in Google Scholar
[
Sánchez-Chardi, A., Peñarroja-Matutano, C., Ribeiro, C.A.O., Nadal, J., 2007. Bioaccumulation of metals and effects of a landfill in small mammals. Part II. The wood mouse, Apodemus sylvaticus. Chemosphere, 70 (1): 101–109. https://doi.org/10.1016/j.chemosphere.2007.06.047
]Search in Google Scholar
[
Sehhatisabet, M.E., Kiabi, B., Pazuki, A., Alipanah, H., Khaleghizadeh, A., Barari, H., Basiri, R., Aghabeigi, F., 2008. Food diversity and niche-overlap of sympatric tits (great tit, Parus major, blue tit, Cyanistes caeruleus and coal tit Periparus ater) in the Hyrcanian Plain forests. Zoology in the Middle East, 44 (1): 18–30. https://doi.org/10.1080/09397140.2008.10638285
]Search in Google Scholar
[
Snow, D.W., 1969. The moult of British thrushes and chats. Bird Study, 16 (2): 115–129.
]Search in Google Scholar
[
Sobańska, M.A., 2005. Wild boar hair (Sus scrofa) as a noninvasive indicator of mercury pollution. Science of the Total Environment, 339 (1-3): 81–88. https://doi.org/10.1016/j.scitotenv.2004.07.018
]Search in Google Scholar
[
Solís, I, Sanz, J.J., Imba, L., Barba, E., 2021. A higher incidence of moult–breeding overlap in great tits across time is linked to an increased frequency of second clutches: a possible effect of global warming? Animal Biodiversity and Conservation, 44 (2): 303–315. http://dx.doi.org/10.32800/abc.2021.44.0303
]Search in Google Scholar
[
Sorensen, A.E., 1981. Interactions between birds and fruit in a temperate woodland. Oecologia, 50: 242–249.
]Search in Google Scholar
[
Stevens, R.T., Ashwood, T.L., Sleeman, J.M., 1997. Mercury in hair of muskrats (Ondatra zibethicus) and mink (Mustela vision) from the US Department of Energy Oak Ridge Reservation. Bulletin of Environmental Contamination and Toxicology, 58 (5): 720–725. https://doi.org/10.1007/s001289900392
]Search in Google Scholar
[
Stostad, H.N., Menéndez, R., 2014. Woodland structure, rather than tree identity, determines the breeding habitat of Willow Warblers Phylloscopus trochilus in the northwest of England. Bird Study, 61 (2): 246–254. https://doi.org/10.1080/00063657.2014.901293
]Search in Google Scholar
[
Török, J., 1985. The diet niche relationships of the great tit (Parus major) and blue tit (Parus caeruleus) nestlings in an oak forest. Opuscula Zoologica Budapest, 19 (20): 99–108.
]Search in Google Scholar
[
Townsend, J.M., Rimmer, C.C., Driscoll, C.T., McFarland, K.P., Inigo-Elias, E., 2013. Mercury concentrations in tropical resident and migrant songbirds on Hispaniola. Ecotoxicology, 22: 86–93. https://doi.org/10.1007/s10646-012-1005-1
]Search in Google Scholar
[
Trujillo-González, J.M., Torres-Mora, M.A., Keesstra, S., Brevik, E.C., Jiménez-Ballesta, R., 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553: 636–642. https://doi.org/10.1016/j.scitotenv.2016.02.101
]Search in Google Scholar
[
UNEP (United Nations Environmental Protection) and WHO (World Health Organization), 2008. Guidance for identifying populations at risk from mercury exposure. Geneva, Switzerland: UNEP (United Nations Environmental Protection) and WHO (World Health Organization). 170 p. [cit. 2024-5-20]. https://www.who.int/publications/m/item/guidance-for-identifying-populations-at-risk-from-mercury-exposure
]Search in Google Scholar
[
VanArsdale, A., Weiss, J., Keeler, G., Miller, E., Boulet, G., Brulotte, R., Poissant, L., 2005. Patterns of mercury deposition and concentration in northeastern North America (1996–2002). Ecotoxicology, 14: 37–52. https://doi.org/10.1007/s10646-004-6258-x
]Search in Google Scholar
[
Watts, C.H., 1968. The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. Journal of Animal Ecology, 37 (1): 25–41. https://doi.org/10.2307/2709
]Search in Google Scholar
[
Zábojníková, L., 2022. Mercury concentrations in hair, blood, and internal organs of small terrestrial mammals – effect of seasonality, species, sex and morphometric paramaters. Master thesis. University of Žilina Žilina. 101 p.
]Search in Google Scholar