Cite

Balčiauskas, L., Čepuklené, A., Balčiaukiené, L., 2017. Small mammal community response to early meadow-forest succession. Forest Ecosystems, 4: 4–11. DOI 10.1186/s40663-017-0099-610.1186/s40663-017-0099-6 Search in Google Scholar

Balshi, M.S., McGuire, A.D., Zhuang, Q., Melillo, J., Kicklighter, D.W., Kasischke, E., Wirth, C., Flannigan, M., Harden, J., Clein, J.S., Burnside, T.J., McAllister, J., Kurz, W.A., Apps, M., Shvidenko, A., 2007. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. Journal of Geophysical Research, 112: 1–18. https://doi.org/10.1029/2006JG00038010.1029/2006JG000380 Search in Google Scholar

Beauvais, G.P., Buskirk, S.W., 1999. Modifying estimates of sampling effort to account for sprung traps. Wildlife Society Bulletin, 27: 39–43. Search in Google Scholar

Bogdziewicz, M., Zwolak, R., 2014. Responses of small mammals to clear-cutting in temperate and boreal forests of Europe: A meta-analysis and review. European Journal of Forest Research, 133: 1–11. https://doi.org/10.1007/s10342-013-0726-x10.1007/s10342-013-0726-x Search in Google Scholar

Bollinger, E. K., 1995. Successional changes and habitat selection in hayfield bird communities. Auk, 112 (3): 720–730. Search in Google Scholar

Chapin, F.S., McGuire, A.D., Randerson, J., 2000. Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 6: 211–223. https://doi.org/10.1046/j.1365-2486.2000.06022.x10.1046/j.1365-2486.2000.06022.x Search in Google Scholar

Danielson, J. B., Anderson, G. S., 1999. Habitat selection in geographically complex landscapes. In Barrett, G.W., Peles J.D., 1999 (eds). Landscape ecology of small mammals. New York, Berlin, Heidelberg : Springer Verlag. 347 p.10.1007/978-0-387-21622-5_5 Search in Google Scholar

Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 155: 399–423. https://doi.org/10.1016/S0378-1127(01)00575-810.1016/S0378-1127(01)00575-8 Search in Google Scholar

Gardiner, B., Blennow, K., Carnus, J. M., Fleischner, P., Ingemarson, F., Landmann, G., Lindner, M., Marzano, M., Nicoll, B., Orazio, C., Peyron, J.L., Reviron, M.P., Schelhaas, M., Schuck, A., Spielmann, M., Usbeck, T., 2010. Destructive storms in European forests: Past and forthcoming impacts. Final report to European Commission - DG Environment. Joensuu: European Forest Institute, Atlantic European Regional Office, EFIATLANTIC, Cestas. 137 p. Search in Google Scholar

Hanzák, J., Rosický, B., 1949. New findings about some representatives of the orders Insectivora and Rodentia in Slovakia. Sborník Národního Musea v Praze, Acta Musei Nationalis Pragae, no. 4: 3–77. Search in Google Scholar

Hlôška, L., Chovancová, B., Chovancová, G., Fleischer, P., 2016. Influence of climatic factors on the population dynamics of small mammals (Rodentia, Soricomorpha) on the sites affected by windthrow in the High Tatra Mts. Folia Oecologica, 43 (1): 12–20. Search in Google Scholar

Kowalski, K., 1957. Microtus nivalis (Martins, 1842) (Rodentia) in Carpathians. Acta Theriologica, 1 (6): 159–182.10.4098/AT.arch.55-6 Search in Google Scholar

Kowalski, K., 1960. Pitymys Mc. Mutrie 1831 (Microtidae, Rodentia) in the Northern Carpathians. Acta Theriologica, 4 (6): 81–89.10.4098/AT.arch.60-6 Search in Google Scholar

Kratochvíl, J., 1968. Der Antritt des Vermehrungsprozesses der kleinen Erdsäugetiere in der Hohen Tatra. Zoological Letters, 17: 299–310. Search in Google Scholar

Kratochvíl, J., 1970. Pitymys-Arten aus der Hohen Tatra (Mammalia, Rodentia). Acta Science Naturae Brno, 4: 1–63. Search in Google Scholar

Kratochvíl, J., Gaisler, J., 1967. Die Sukzession der kleinen Erdsäugetiere in einem Bergwald Sorbeto-Piceetum. Zoological Letters, 16: 301–324. Search in Google Scholar

Kratochvíl, J., Pelikán, J., 1955. Notes on the penetration of field voles into the Tatra National Park. Zoological and Entomological Letters, 4: 303–312. Search in Google Scholar

Krebs, C.J., 1966. Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs, 36: 239–273.10.2307/1942418 Search in Google Scholar

Krojerová-Prokešová, J., Homolka, M., Barančeková, M., Heroldová, M.,., Baňař, P., Kamler, J., Purchart, L., Suchomel, J., Zejda, M., 2016. Structure of small mammal communities on clearings in managed Central European forests. Forest Ecology and Management, 367: 41–51. https://doi.org/10.1016/j.foreco.2016.02.02410.1016/j.foreco.2016.02.024 Search in Google Scholar

Li, X., He, H.S., Wu, Z., Liang, Y., Schneiderman, J.E., 2013. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China. PLoS One, 8: e59747. https://doi.org/10.1371/journal.pone.005974710.1371/journal.pone.0059747361341823573209 Search in Google Scholar

Lindner, M., Maroschek, M., Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M.J., Marchetti, M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259: 698–709. https://doi.org/10.1016/j.foreco.2009.09.02310.1016/j.foreco.2009.09.023 Search in Google Scholar

MacArthur, R., MacArthur, J.W., 1961. On bird species diversity. Ecology, 42 (3): 594–598. https://doi.org/10.2307/193225410.2307/1932254 Search in Google Scholar

Meddens, A.J.H., Hicke, J.A., Ferguson, C.A., 2012. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecological Applications, 22: 1876–1891.10.1890/11-1785.123210306 Search in Google Scholar

Meloun, M., Militký, J., Hill, M., 2017. Statistická analýza vícerozmerných dat v příkladech [Statistical analysis of multidimensional data in examples]. Praha: Karolinum. 757 p. Search in Google Scholar

NCSS 9 Statistical Software (2013). Kaysville, Utah, USA: NCSS LLC. [cit. 2021-05-10]. ncss.com/software/ncss. Search in Google Scholar

Niedziałkowska, M., Konczak, J., Czarmonska, S., 2010. Species diversity and abundance of small mammals in relation to forest productivity in northeast Poland. Ecoscience, 17 (1): 109–119. https://doi.org/10.2980/17-1-331010.2980/17-1-3310 Search in Google Scholar

Panzacchi, M., Linnell, J.D.C., Melis, C., Odden, M., Odden, J., Gorini, L., Andersen, R. 2010. Effect of land-use on small mammal abundance and diversity in a forest–farmland mosaic landscape in south-eastern Norway. Forest Ecology and Management, 259: 1536–1545. https://doi.org/10.1016/j.foreco.2010.01.03010.1016/j.foreco.2010.01.030 Search in Google Scholar

Pelikán, J., 1955. About the state of some small mammals in the High Tatras in the spring of 1955. Zoological and Entomological Letters, 4: 295–302. Search in Google Scholar

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler, J., Beer, C., Buchman, N., Frank, D.C., Papale, D., Smith, P., Thonicke, K., van der Velde, M., Vicca, M., Walz, A., Wattenbach, M., 2013. Climate extremes and the carbon cycle. Nature, 500: 287–295. https://doi.org/10.1038/nature1235010.1038/nature1235023955228 Search in Google Scholar

Sánchez-González, B., Barja, I., Navarro-Castilla, Á., 2017. Wood mice modify food intake under different degrees of predation risk: Influence of acquired experience and degradation of predator’s faecal volatile compounds. Chemoecology, 27: 115–122. https://doi.org/10.1007/s00049-017-0237-110.1007/s00049-017-0237-1 Search in Google Scholar

Seidl, R., Schellhaas, J.M., Lexer, J.M., 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17 (9): 2842–2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x10.1111/j.1365-2486.2011.02452.x Search in Google Scholar

Schelhaas, M. J., Nabuurs, G. J., Schuck, A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology, 9: 1620–1633. DOI: 10.1046/j.1529-8817.2003.00684.x10.1046/j.1365-2486.2003.00684.x Search in Google Scholar

Seidl, R., Schellhaas, J. M., Rammer, W., Verkerk, J. P., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4 (9): 806–810. https://doi.org/10.1038/nclimate231810.1038/nclimate2318434056725737744 Search in Google Scholar

Šmilauer, P., Lepš, J., 2014. Multivariate analysis of ecological data using Canoco 5. Cambridge CB2 8BS, United Kingdom: University Printing House. 360 p.10.1017/CBO9781139627061 Search in Google Scholar

Štollmann, A., Dudich, A., 1985. Contribution to the knowledge of the fauna of small terrestrial mammals (Insectivora, Rodentia) of the Western Tatras. Zborník prác o Tatranskom národnom parku, 26: 161–172. Search in Google Scholar

Temperli, C., Bugmann, H., Elkin, C., 2013. Cross-scale interactions among bark beetles, climate change and wind disturbances: A landscape modeling approach. Ecological Monographs, 83: 383–402. https://doi.org/10.1890/12-1503.110.1890/12-1503.1 Search in Google Scholar

Thompson, C.M., Gese, E.M., 2013. Influence of vegetation structure on the small mammal community in a shortgrass prairie ecosystem. Acta Theriologica, 58: 55–61.10.1007/s13364-012-0098-5 Search in Google Scholar

Turner, M.G., 2010. Disturbance and landscape dynamics in a changing world. Ecology, 91: 2833–2849. https://doi.org/10.1890/10-0097.110.1890/10-0097.121058545 Search in Google Scholar

Umetsu, F., Pardini, R., 2007. Small mammals in a mosaic of forest remnants and anthropogenetic habitats-evaluating matrix quality in a Atlantic forest landscape. Lanscape Ecology, 22: 517–530. https://doi.org/10.1007/s10980-006-9041-y10.1007/s10980-006-9041-y Search in Google Scholar

Wang, G. M., Zhou, Q.Q., Zhong, W.Q., Sun, C.L., Chen, Z.Z., 2001. Species richness – primary productivity relationship of plants and small mammals in the Inner Mongolian steppes, China. Journal of Arid Environments, 49: 477–484. https://doi.org/10.1006/jare.2001.081410.1006/jare.2001.0814 Search in Google Scholar

Westerling, A.L., Hidalgo, H.G., Cayan, D. R., Swetnam, T.W., 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313: 940–943. DOI: 10.1126/science.112883410.1126/science.112883416825536 Search in Google Scholar

Zárybnická, M., Riegert, J., Bejček, V., Sedláček, F., Šťastný, K., Šindelář, J., Heroldová, M., Vilímová, J., Zima, J., 2017. Long-term changes of small mammals communities in heterogenous landscapes of Central Europe. European Journal of Wildlife Research, 63 (6): 1612–1642. https://doi.org/10.1007/s10344-017-1147-910.1007/s10344-017-1147-9 Search in Google Scholar

Zhang, M., Wang, Y., Li, B., Feng, Z., Zhao, Y., Xu, Z., 2018. Synergistic succession of the small mammal community and herbaceous vegetation after reconverting farmland to seasonally flooded wetlands in the Dongting Lake Region, China. Mammal Study, 43 (4): 229–243. https://doi.org/10.3106/ms2017-004310.3106/ms2017-0043 Search in Google Scholar

Zuur, F. A., Ieno, N. E., Smith, M. G., 2007. Analysing ecological data. New York: Springer Science + Busines Media, LLC. 672 p.10.1007/978-0-387-45972-1 Search in Google Scholar

eISSN:
1338-7014
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Plant Science, Zoology, Ecology